[bookmark: _GoBack]In this assignment, we will implement a process for placing orders and permanently storing the subtotal, tax, and totals for each order. We will also pre-emptively disable buttons when their functionality is unavailable.
In order to create a better user experience, we want to limit the functionality that is available to users based on certain conditions. For example, instead of telling a user that they can edit a product only if one is selected after they have already clicked the Edit... button, we'll disable the button entirely unless only one product is selected. This will give users visual clues as to what functionality they currently have access to and reduce their frustration in not being told what they can and cannot do ahead of time.
1. Update the DelegateCommand to support enabling and disabling.
a. Add the canExecute field and overloaded constructor to the DelegateCommand class, as shown in the class diagram (3.2OESDelegateCommandUpdate.png).
b. Move the code in the existing constructor to the new constructor and set the canExecute field to the canExecute parameter.
c. Chain the existing constructor to the new constructor. Pass null for the canExecute parameter.
d. In the CanExecute method, return true if the canExecute field is null. Otherwise, call the canExecute field and pass the parameter through.

return this.canExecute == null ? true : this.canExecute(parameter);
2. In the MultiProductViewModel, pass in a second lambda expression when creating the Edit... and Delete commands. This one is a predicate that returns a value indicating if a single item is selected. This will enable the command only if one item is selected. This negates the need to show a message box to the user if zero or multiple items are selected, as they can never click the button if that is the case.

new DelegateCommand(p => this.EditProductExecute(), p => this.NumberOfItemsSelected == 1)

3. Apply the same predicate to each of the Edit... and Delete commands so that they are enabled only if the number of items selected is 1. Do the same for the Remove command in the MultiCategoryViewModel.
4. Run the application.
a. View all products. The Edit... and Delete commands should be disabled when no products or multiple products are selected.
b. Select a single product. The Edit... and Delete commands should be enabled.
c. Test the other Edit... and Delete commands in the same way.
Let's add a quantity for each product to represent the amount of that product that is currently in stock. A user can modify the quantity for each product.
1. Add an auto-property of type int called Quantity to the product model and a wrapper property for it called Quantity on the ProductViewModel.
2. Add a label and a textbox for setting the quantity to the ProductView. Adjust rows and add row definitions as needed.
3. Add a column for displaying the quantity in the MultiProductView.
4. Run the application. Edit an existing product and change the quantity. The value in the model and the quantity shown in the list view should be updated appropriately.
While our application has functionality to add, edit, and remove orders and individual lines within those orders, it doesn't have a way to easily see subtotals, taxes, and totals. We're going to add this feature for both lines and orders and have the order totals update automatically when a line is added, updated, or removed.
While all of these things can be calculated by totaling the price and quantity of the product of each line in an order, that isn't ultimately a good idea. What if the price of a product changes after an order has been created or placed? If we were just calculating totals on the fly, the order total would change even after it had already been placed – suddenly, an order that a customer paid $32.56 for a week ago now shows that the total was $35.72. It looks like the customer didn't pay enough for their order, but in reality the order total is incorrect because the real total wasn't stored in the database.
1. Store the current tax rate of 5.5 percent as an application setting by adding the following element to the App.config file. Keeping this value in the configuration file rather than directly in the C# code means that it will be easier to change later on if and when the tax rate changes. We'll get this value whenever we need to calculate taxes for a product or order.

<appSettings>
 <add key="TaxRate" value="0.055" />
</appSettings>

2. Add taxes and totals to order lines.
a. Add the field, properties, and method to the OrderLine model, as shown in the class diagram (3.2OESOrderLineTotals.png).
b. In the ProductAmount property, get and set the productAmount field. This will store the current price of the line's product. When setting the field, always round the value to two decimal places. For our purposes, we do not need to store information beyond normal currency values, which go to two decimal places.
c. The TaxPerProduct property is an auto-property. Set it in the CalculateTax method by getting the TaxRate application setting and multiplying that number by the product amount. Round the value to two decimal places.

decimal taxRate = decimal.Parse(ConfigurationManager.AppSettings["TaxRate"]);
this.TaxPerProduct = this.ProductAmount * taxRate;

In order to use the ConfigurationManager, you'll need to add a reference to the System.Configuration project and a using directive for that namespace.
d. In our application, "Extended" refers to the total values of the line (i.e. multiplying a given value by the line's quantity). In the ExtendedProductAmount property, return the result of multiplying the product amount by the quantity. In the ExtendedTaxAmount property, return the result of multiplying the tax per product by the quantity. Round both results to two decimal places.
e. Add the ProductTotal and TaxTotal properties to the OrderLineViewModel, as shown in the class diagram. The ProductTotal property returns the line's ExtendedProductAmount, and the TaxTotal property returns the line's ExtendedTax.
f. The ProductTotal and TaxTotal properties are intended to display the totals of each line to the user, and they need to be updated whenever a value that is used to calculate them is updated.
i. When the line's product is updated:
1. Reset the line's product amount to the price of the new product.
2. Re-calculate the line's tax per product.
3. Propagate UI changes for all properties affected by the change (i.e. by calling OnPropertyChanged for each property).
ii. When the line's quantity is updated, propagate UI changes for all properties affected by the change.
g. In the MultiOrderLineView, display columns for Product, Quantity, Subtotal, and Tax. Bind them to the Product, Quantity, ProductTotal, and TaxTotal properties, respectively.
h. Run the application. Create a new order and add an order line. Select the existing line and edit it. Change the product; the subtotal and tax in the MultiOrderLineView should change accordingly. Change the quantity; once again, the subtotal and tax should change accordingly.
3. Add taxes and totals to orders.
a. Add the fields, properties, and method to the Order model, as shown in the class diagram (3.2OESOrderTotals.png).
b. The ShippingAmount property gets and sets the shippingAmount field, and the value should always be rounded to two decimal places.
c. The ProductTotal and TaxTotal properties get and set their respective fields. The values should always be rounded to two decimal places.
d. The values of the ProductTotal and TaxTotal properties represent the sum of the respective totals of all of the order's lines. Set the properties in the CalculateTotals method.

this.ProductTotal = this.Lines.Where(l => !l.IsArchived).Sum(l => l.ExtendedProductAmount);
this.TaxTotal = this.Lines.Where(l => !l.IsArchived).Sum(l => l.ExtendedTax);

e. The Total property is intended to display the total of each order to the user. In the getter, return the sum of the product total, the tax, and the shipping fee.
f. Add the shipping and totals properties to the OrderViewModel, as shown in the class diagram. Each property wraps the same property on the model. The shipping amount is set by the user, so add a label and a textbox for the shipping amount to the OrderView. Be sure to call OnPropertyChanged in the setter. The user can view the order total but not set it, so add a label and a disabled textbox for the total to the OrderView.
g. In the UpdateOrderTotals method, call OnPropertyChanged for each of the four properties listed below. This method will be called whenever a change is made that could affect the order's totals and those changes need to be propagated to the user interface.
i. Status
ii. ProductTotal
iii. TaxTotal
iv. Total
h. In the OrderViewModel's Save method, call the order's CalculateTotals method and the UpdateOrderTotals method after saving changes to the database. This will re-calculate the subtotal and taxes for the order and notify the user interface of those changes each time the order is saved.
i. Run the application. Create a new order and click OK. Then edit the order you just created and add an order line. Update the shipping amount and click OK. The values for the subtotal, tax, and total of that order should update to the appropriate amounts once the order window closes.
You might have noticed that the order's totals aren't updated automatically in the list view when changing the shipping amount or adding, removing, or changing a line item. In order to add this functionality, we need to find a way to have a MultiOrderLineViewModel send a message to the OrderViewModel that values need to be recalculated and the user interface needs to be updated. Because the MultiOrderLineViewModel has no knowledge of the OrderViewModel, we'll have to use delegates to send those messages.
1. In the MultiOrderLineViewModel, add an auto-property of type Action called LineChanged.
2. In the OrderViewModel's constructor, plug the UpdateOrderTotals method in to the filteredLineViewModel's LineChanged delegate.
3. In CreateNewOrderLineExecute, EditOrderLineExecute, and DeleteOrderLineExecute, call the order's CalculateTotals method and then call the LineChanged delegate. Because we plugged a method that calls OnPropertyChanged for several properties in to this delegate, calling it each time a line is modified will update the order's totals in the user interface each time a change is made that could affect those totals.
4. Run the application. Edit an existing order.
a. Change the shipping amount. The order's shipping amount and total should change in the list view.
b. Add a new line and click OK. The order's subtotal, tax, and total should change in the list view.
c. Edit a new line, change the quantity, and click OK. The order's subtotal, tax, and total should change in the list view.
d. Delete a line. The order's subtotal, tax, and total should change in the list view.
Now that we have an infrastructure in place for calculating and displaying subtotals, taxes, and totals for orders and each of their lines, we can add the ability to place orders. For our purposes, placing an order means that the order's status will change from pending to placed, the price and quantity of each line's product will be locked in, and the order's subtotal and tax will be stored in the database for easy lookup later on. While these values can be calculated by examining each line, storing the subtotal and tax per order means that lines will not have to be stored in memory in order to look up those values for placed orders.
1. Add the Post method to the OrderLine model, as shown in the class diagram (3.2OESPlaceOrder.png). In it, set the product amount to the product's current price and reduce the product's quantity by the line's quantity.
2. Add the Post method to the Order model, as shown in the class diagram. In it, check if the order's status is pending. If so, complete the following:
a. Change the status to placed
b. Post and calculate the tax for each line
c. Calculate the order totals
d. Normally we'd want to add cases to handle orders with a status of placed or shipped, but we're not going to implement that functionality in our system at this time.
3. Add the PlaceOrder method to the MultiOrderViewModel, as shown in the class diagram. In it, get the selected view model. If the view model is not null, post the view model's order and then call the UpdateOrderTotals method to update the order's values in user interface one last time.
4. Add the IsOrderPending property to the MultiOrderViewModel, as shown in the class diagram. In the getter, return a boolean value representing whether or not the selected order has a status of pending. This will be used to enable and disable commands.

return this.AllOrders.SingleOrDefault(o => o.IsSelected).Order.Status == OrderStatus.Pending;

5. Add a command to the MultiOrderViewModel with a display name of "Place" and a command that calls the PlaceOrder method. The command should be enabled only if the number of items selected is 1 and the selected order is pending.
6. Modify the Edit... and Delete commands in the MultiOrderViewModel so that they are enabled only if the number of items selected is 1 and the selected order is pending.
7. Run the application.
a. Place an existing order. The order's totals should now be fixed, and the commands for editing, deleting, and placing the order should be disabled.
b. Change the price of a product in the order you placed. View the placed order and ensure that the subtotal, tax, and total did not change as a result of changing the product price.
