In this assignment, we will add the ability for users to remove items (or in our case, "archive," as we don't want to delete any data from our database. In addition, we'll implement a many-to-many relationship between products and categories.
Our application is missing one function that is very common in data entry software – deleting or removal of data. We'll add that functionality now by extending our repository.
1. Update the repository to accommodate removing products.
a. Add the ProductRemoved event and the RemoveProduct method to the Repository class, as shown in the class diagram (3.1OESRemoveProduct.png).
b. In the RemoveProduct method, first remove the product from the Products DbSet. Then call the ProductRemoved event, and pass in the current object and a new ProductEventArgs object. In the coming steps, the MultiProductViewModel will attach a method to the ProductRemoved event that will handle removing the coorect ProductViewModel from the user interface.

this.db.Products.Remove(product);

if (this.ProductRemoved != null)
{
 this.ProductRemoved(this, new ProductEventArgs(product));
}

2. Respond to the removal of products.
a. Add the OnProductRemoved method to the MultiProductViewModel, as shown in the class diagram.
b. In the method, first get the single selected view model. If the selected view model exists, check if the selected view model's product matches the product from the event args. If so, remove the view model from the AllProducts collection.
c. In the constructor, attach the OnProductRemoved method to the repository's ProductRemoved event.
3. Add a command for deleting products.
a. Add the Product property to the ProductViewModel and the DeleteProductExecute method to the MultiProductViewModel, as shown in the class diagram.
b. In the DeleteProductExecute method, first get the single selected view model. If the view model exists, show a confirmation box to the user asking if they're sure they want to delete the product. If they're sure (i.e. they click Yes in the message box), call the repository's RemoveProduct and SaveToDatabase methods.

if (viewModel != null)
{
 if (MessageBox.Show("Do you really want to delete the product?", "Confirmation", MessageBoxButton.YesNo) == MessageBoxResult.Yes)
 {
 this.repository.RemoveProduct(viewModel.Product);
 this.repository.SaveToDatabase();
 }
}
else
{
 MessageBox.Show("Please select only one product.");
}

c. In the CreateCommands method, add a command with a display name of "Delete" and a command that runs the DeleteProductExecute method.
4. Run the application.
a. View all products. Click the Delete button without selecting a product. A message box should pop up telling the user to select a single product.
b. Select one product and click the Delete button. The product should be removed from the repository and the database, and the associated view model should be removed from the list of products in the user interface.
We've now added a feature that users would likely need in order to use this application in a real-world setting, but when they delete a product, it is actually being removed from the database entirely. This can cause data integrity issues – when a product is deleted, what happens to the orders that contained that product? You might receive a referential integrity error or the associated order might also be deleted, neither of which we want to happen. Ideally, we want to keep a complete history of orders in order to do some reporting on them.
Instead of completely removing a product from the database when the user wants to delete it, we'll "archive" the product by setting a flag on the product and excluding it from the user interface.
1. Add an auto-property to the Product model called IsArchived. Its type is bool.
2. In the repository's RemoveProduct method, set the product's IsArchived flag to true instead of removing the product from the DbSet.
3. In the repository's GetProducts method, return only the products where the IsArchived flag is false instead of returning all products. Adding this filter to the GetProducts method will prevent you from having to filter the products everywhere you call GetProducts.

return this.db.Products.Where(p => !p.IsArchived).ToList();

4. Run the application. Delete a product and ensure that, instead of being removed from the database, its IsArchived flag is set to true. Also ensure that the product no longer appears in the list of products in the user interface.
We're now going to implement a many-to-many relationship between products and categories. Once we're finished, the categories will act like tags in an online retail store – for example, a t-shirt with a school logo on it could go in categories like apparel and school pride.
We'll be modifying the existing one-to-many relationship between product and category to support a many-to-many relationship. To do this, we'll create a "bridge" or "linking" model called ProductCategory.
1. Add a new model class called ProductCategory. Define it as shown in the class diagram (3.1OESProductCategory.png).
2. Add a DbSet to the OrderEntryContext called ProductCategories.
3. Update the repository (3.1OESRepositoryProductCategory.png).
a. Add the ContainsProductCategory and GetProductCategory methods and define them as shown in the class diagram. Model their contents after the similar existing repository methods.
b. Add the AddProductCategory method. Model its body after the AddCategory method. Call the CategoryAdded event and pass in the Category of the pc parameter. We can use the existing event rather than defining a new one called ProductCategoryAdded because the ProductView will contain a MultiCategoryView (in the same way that the CustomerView contains a MultiOrderView), and the MultiCategoryViewModel already responds to the addition and removal of categories. We're just capitalizing on work we've already completed.
c. Add the RemoveProductCategory method. Model its body after the RemoveCategory method. Call the CategoryRemoved event and pass in the Category of the pc parameter.
4. Modify the product and category models so that they each of an ICollection of type ProductCategory called ProductCategories. The relationship among the three models is shown in the class diagram (3.1OESProductCategoryRelationship.png). The ProductCategory model is acting as the "linking" or "bridge" table between the Product and Category models.
5. Show multiple categories when viewing a product. This process will be very similar to the process for showing multiple orders when viewing a customer.
a. Embed a MultiCategoryViewModel in the ProductViewModel by adding fields and properties as shown in the class diagram (3.1OESFilteredCategoryViewModel.png).
b. In the FilteredCategories getter, use a LINQ query to get a collection of the current product's categories and return them as an ObservableCollection. Model the query after the one in the getter of the FilteredOrders property in the CustomerViewModel.
c. In the constructor, instantiate the filteredCategoryViewModel field to a new MultiCategoryViewModel. Set its AllCategories property to the result of calling the FilteredCategories property.
d. In the ProductView, remove the label for and combo box of categories. Replace them with a MultiCategoryView whose DataContext is bound to the FilteredCategoryViewModel property.
e. We also need to make some modifications to the MultiCategoryViewModel to keep our "number of items selected" functionality – these are the same modifications we made to the MultiOrderViewModel. In the MultiCategoryViewModel, add a method called AddPropertyChangedEvent that returns void and takes a parameter called categories of type List<CategoryViewModel>. Put the following code in the method body:

categories.ForEach(cvm => cvm.PropertyChanged += this.OnCategoryViewModelPropertyChanged);

Call this new method from the constructor after the LINQ query. Also call it from the FilteredCategories property after the LINQ query.
6. Remove the CategoryId and Category properties from the product model. Remove the Category property from the ProductViewModel. Resolve any compiler errors that occur because of references to these properties.
7. We now have two different situations in which we are displaying a list of categories – the first is a list of all categories and the second is a list of categories associated with a particular product. We need different commands to appear in each of these cases. We'll take a similar approach to solving this problem as we did with MultiOrderViewModel.
a. Add a Product field and a Product parameter to the constructor of the MultiCategoryViewModel. In the constructor, set the field to the parameter. Also, clear the Commands collection and call CreateCommands.
b. In the constructor of ProductViewModel, pass the product field in to the MultiCategoryViewModel constructor. In the ShowAllCategories method of the MainWindowViewModel, pass null in to the MultiCategoryViewModel constructor.
c. Modify the MultiCategoryViewModel's CreateCommands method so that the New..., Edit..., and Delete commands are created only if the product is null. Otherwise, add two new commands. The first is Add..., which calls a method called AddCategoryExecute. The second is Remove, which calls a method called RemoveCategoryExecute.
d. [bookmark: _GoBack]Define a method in MultiCategoryViewModel called AddCategoryExecute. It takes no parameters and returns void. Leave the body empty for now. We'll return to this method in a later step.
e. Define a method in MultiCategoryViewModel called RemoveCategoryExecute. It takes no parameters and returns void. In the body, first get the only selected CategoryViewModel. If the view model is not null, show a confirmation box to the user asking if they want to remove the category – model it after the confirmation box asking about deleting a product. If they confirm, find the product's ProductCategory whose category matches the selected view model's category. Then remove that ProductCategory from the database and save. See the pseudocode below.

foreach ProductCategory in product
 if category of current ProductCategory matches category of view model
 remove ProductCategory from database and save

If the view model is null, show a message to the user telling them to select a single category.
8. We now need to give the user a way to add categories to a product. This involves creating a view model and a view.
a. Create a new class called AddCategoryViewModel in OrderEntrySystem and define it as shown in the class diagram (3.1OESAddCategoryViewModel.png).
b. In the CreateCommands method, add commands for OK and Cancel.
c. In the Save method, first create a new ProductCategory. Set its category to the view model's category, and set its product to the view model's product. Then add it to the repository and save.
d. Create a new user control called AddCategoryView in OrderEntrySystem. Add to it a label and combo box for showing existing categories and a content control for showing the OK and Cancel commands as buttons. Bind the combo box's ItemsSource property to the Categories property, and bind the SelectedItem property to the Category property.
9. In the MultiCategoryViewModel, modify the ShowCategory method to take a WorkspaceViewModel and a UserControl as parameters. Instead of creating the CategoryView in the method body, simply set the passed-in control's DataContext to the passed-in view model.

private void ShowCategory(WorkspaceViewModel viewModel, UserControl view)
{
 // method body here
}

We're doing this to make this method more modular and reusable. Now that we're passing in the user control, we can use this method not only for creating and editing categories, but also for adding existing categories to a product.
10. In the CreateNewCategoryExecute method, pass a new CategoryView object to the call to ShowCategory. Do the same in the EditCategoryExecute method.
11. In the AddCategoryExecute method, instantiate an AddCategoryViewModel. Then call ShowCategory and pass in the view model and a new AddCategoryView object.
12. Run the application.
a. Edit an existing product. An empty list of categories with Add... and Remove buttons beneath it should appear in the product view.
b. Click the Add... button. The AddCategoryView should appear in a new window. Its combo box should be populated with existing categories.
c. Choose a category and click OK. A new ProductCategory object should be created and added to the database. The category you chose should appear in the list of categories in the product view.
d. Select the category you just added. Click the Remove button. A confirmation box should appear. Confirm that you want to remove the category. The category should be removed from the list, and the associated ProductCategory object should be archived.
e. View all categories. The New..., Edit..., and Delete buttons should appear below the list and should function as they did before.
