In this assignment, we'll implement more one-to-many relationships by adding orders and individual order lines to the system.
[bookmark: _GoBack]We're finally going to fulfill the name of our system (order entry) by adding a model to represent orders. Orders will have a one-to-many relationship with customers, in that a customer can have many orders and an order will be associated with a single customer. To start with, orders will simply have a status and a customer; we will continue building order functionality in a later tutorial.
1. Create a new class called Order and an enumeration called OrderStatus in the OrderEntryEngine project. Define them as shown in the class diagram (2.3OESOrderModel.png). Add the Orders navigation property to the Customer model.
2. Create a new class called OrderEventArgs in the OrderEntryEngine project. Model it after the other event args classes.
3. Create a new class called OrderViewModel and a new user control called OrderView. Model them after the other view models and views. Use the class diagram (2.3OESOrderViewModel.png) as a guide. In the view, only include a combo box for the order status.
4. Add a DbSet for orders to the OrderEntryContext.
5. Add an OrderAdded event handler and the four methods for adding and getting orders to the Repository class. Model them after the existing event handlers and methods.
6. Create a new class called MultiOrderViewModel and a new user control called MultiOrderView. Model them after the other multi view models and multi views. Use the class diagram (2.3OESMultiOrderViewModel.png) as a guide. In the view, include columns for the customer and the status.
7. Add a method and a command to the MainWindowViewModel to view all orders. Model them after the other methods and commands.
8. Run the application.
a. In the OrderViewModel constructor, set the order's CustomerId property to 1. This is a temporary step in order to be able to save orders.
b. Test the creation and editing of orders. Ensure that orders are successfully saved to the repository and database.
c. Ensure that orders appear in the list view after they are saved.
d. Stop running and remove the code that sets the order's CustomerId property.
Because an order is associated with a specific customer and a customer can own many orders, it makes sense to be able to view all orders that a customer has made. To do this, we will add the MultiOrderView to the CustomerView; in it, we'll show all of the orders associated with the current customer.
1. Add a way to view multiple orders to the CustomerViewModel.
a. Add the field and properties to the CustomerViewModel as shown in the class diagram (2.3OESFilteredOrderViewModel.png). Giving the CustomerViewModel a nested MultiOrderViewModel (in other words, having it compose a MultiOrderViewModel) will allow us to display multiple orders without having to duplicate code or functionality.
b. In the FilteredOrderViewModel property, return the field of the same name.
c. In the FilteredOrders property, use a LINQ query to return a collection of OrderViewModels for all of the current customer's orders. Note that we are using our handy-dandy navigation properties to get the customer's orders rather than going to the repository to get all orders and then filtering that collection down to contain only the orders owned by the current customer.

var orders =
 from o in this.customer.Orders
 select new OrderViewModel(o, this.repository);

return new ObservableCollection<OrderViewModel>(orders);

d. In the CustomerViewModel's constructor, instantiate the filteredOrderViewModel. Then set its AllOrders property to the result of the FilteredOrders property.
2. Add a MultiOrderView to the CustomerView beneath the existing controls but above the OK and Cancel buttons. Bind its DataContext to the FilteredOrderViewModel property.
3. The functionality to update the number of items selected doesn't work for the MultiOrderView that is nested in the CustomerView. This is because we attach the method that adds the functionality in the MultiOrderViewModel constructor but then override the AllOrders collection for the filteredOrderViewModel. Let's refactor our code to get this functionality back.
a. In the MultiOrderViewModel, extract the code that attaches the OnOrderViewModelPropertyChanged method to each view model's PropertyChanged event out to its own method called AddPropertyChangedEvent. Ensure the resulting method is public, returns void, and takes a list of OrderViewModels as a parameter.
b. Call the new method on the FilteredOrderViewModel in the CustomerViewModel's FilteredOrders property before returning the collection. You should end up with something similar to the code below:

var orders =
 (from o in this.customer.Orders
 select new OrderViewModel(o, this.repository)).ToList();

this.FilteredOrderViewModel.AddPropertyChangedEvent(orders);

return new ObservableCollection<OrderViewModel>(orders);

c. Ensure the AddPropertyChangedEvent method is called from the constructor of the MultiOrderViewModel class. If you used Visual Studio's built-in Extract Method feature, this should already be completed.
4. Run the application.
a. Edit an existing customer. That customer's orders should appear in a list view below the textboxes.
b. Click New... to create a new order. Set the status and click OK. The application should crash with a DbUpdate exception. Click the View Detail... link and open each InnerException until you reach the innermost level. The error message should state something to the effect of "The INSERT statement conflicted with the foreign key constraint." This is caused by – you guessed it – a referential integrity error. Orders are linked to customers through a foreign key that cannot be null, and we just tried to create an order with a null CustomerId foreign key.
5. Add a field of type Customer called customer to the MultiOrderViewModel. Add a parameter of type Customer called customer to the MultiOrderViewModel constructor. Set the field to the parameter. This field will be used to determine which customer, if any, is associated with the current list of orders and to successfully create a new order.
6. When instantiating a MultiOrderViewModel in the CustomerViewModel, pass the customer field as the customer parameter. When instantiating a MultiOrderViewModel in the MainWindowViewModel, pass null and the customer parameter.
7. When creating a new order in the CreateNewOrderExecute method, set the order's Customer property to the customer field. Entity Framework will then automatically populate the order's CustomerId property with the value of the customer object's Id property.
8. Run the application.
a. Edit an existing customer. Click New... to create a new order. Set the status and click OK. The order should save successfully and be added to the customer's list of orders.
We know now that creating orders without first associating them with a customer will cause our application to fail because of referential integrity constraints. That being said, we're still offering users a way to create a new order when viewing the full list of orders from the main window (i.e. not in the customer view); if a user tried to create an order this way, they would get the same DbUpdate exception from before because we're not passing a customer along to the MultiOrderViewModel that is responsible for that list of orders. To resolve this, we will only allow the user to create and edit orders from the MultiOrderView that is nested inside the CustomerView.
1. Modify the CreateCommands method of the MultiOrderViewModel so that the New... and Edit... commands are only created if the customer field is not null.
2. In the MultiOrderViewModel's constructor after setting the customer field, clear the Commands collection and then call CreateCommands.
3. Run the application.
a. View all orders. The New... and Edit... commands should not appear below the list of orders.
b. Edit an existing customer. The New... and Edit... commands should appear below the customer's list of orders.
In order to simulate adding multiple products to a single order, we will now introduce order lines in to our application. This is a one-to-many relationship, just as the order-to-customer relationship is one-to-many. Each order can contain many lines, and each line is associated with a single order. Lines will contain a product, and orders will contain a collection of lines. Just like when we introduced other models, introducing order lines will require adding a model, view model, view, multi view model, multi view, event args, repository methods, and a DbSet.
1. Create a new class called OrderLine in the OrderEntryEngine project. Define it as shown in the class diagram (2.3OESOrderLineModel.png). Add the navigation properties to the Order and Product models. In the constructor of the Order model, instantiate the OrderLines collection to a new list.
2. Create a new class called OrderLineEventArgs in the OrderEntryEngine project. Model it after the other event args classes.
3. Create a new class called OrderLineViewModel and a new user control called OrderView. Model them after the other view models and views. Use the class diagram (2.3OESOrderLineViewModel.png) as a guide. In the view, include a combo box for products, a text box for quantity, and a content control for commands.
4. Add a DbSet for order lines to the OrderEntryContext.
5. Add an OrderLineAdded event handler and the four methods for adding and getting order lines to the Repository class. Model them after the existing event handlers and methods.
6. Create a new class called MultiOrderLineViewModel and a new user control called MultiOrderLineView. Model them after the other multi view models and multi views. Use the class diagram (2.3OESMultiOrderLineViewModel.png) as a guide. In the view, include columns for the product and the quantity.
7. Add lines to orders.
a. Modify the OrderViewModel as shown in the class diagram (2.3OESFilteredOrderLineViewModel.png).
b. In the FilteredOrderLineViewModel property, return the field of the same name.
c. In the getter of the FilteredLines property, use a LINQ query to return an OrderLineViewModel for each of the current order's lines. Attach the OnOrderLineViewModelPropertyChanged method to each view model's PropertyChanged event using a similar solution as used in the CustomerViewModel's FilteredOrders property.
d. In the constructor of the OrderViewModel, instantiate the filteredLineViewModel. Set its AllLines property to the result of the FilteredLines property.
8. Add a MultiOrderLineView to the OrderView. Bind its DataContext to the FilteredLineViewModel property.
9. In the Save method of the OrderLineViewModel, add the order to the respository before adding the line to the repository. This will prevent issues with the order not appearing the in the list of orders if the order has not been saved prior to adding lines to it (i.e. you create an order and then immediately add lines as opposed to creating an order, clicking OK to save it, editing it, and then adding lines). This solution isn't ideal, as the order should really only be added/saved if the customer okays it, but this solution is sufficient for the purposes of this assignment.
10. Run the application.
a. Edit an existing order. Add at least one order line. The line should be added successfully and it should appear in the order's list of lines.
b. Create a new order and immediately add at least one order line. The line(s) should be added to the order's list of lines, and the order should be added to the customer's list of orders.
