In this assignment, we use Entity Framework to implement one-to-many relationships between models. We'll also introduce editing of existing objects and enumerations.
We're going to introduce enumerations to our application. We will use combo boxes to display the values of the enumeration and allow the user to choose from the values in order to specify which one to apply to a given product.
1. Create an enumeration called Condition to the OrderEntryEngine project. It has the values listed below.
a. Poor
b. Average
c. Excellent
2. Use the condition enumeration in the product model.
a. Add the properties to the Product and ProductViewModel classes, as shown in the class diagram below (2.2OESConditionProperties.png).
b. In the ProductViewModel's Condition property, get and set the product field's Condition property. Call OnPropertyChanged in the setter.
c. In the Conditions property, return the values of the Condition enum. Cast the collection as an IEnumerable.

return Enum.GetValues(typeof(Condition)) as IEnumerable<Condition>;
3. Add a label and a combo box to the ProductView for the Condition property. Bind the combo box's ItemsSource to the Conditions property, and bind the SelectedItem to the Condition property. This populates the combo box with the values of the Condition enum, and sets the current item of the combo box to the value of the product's Condition.

Make sure to set the grid column and grid row of the label and combo box. You'll need to add row definitions to your grid.
4. Add a column to the MultiProductView for the Condition property.
5. Run the application.
a. Create a new product, and set its condition to excellent. Save it.
b. View all products. The product you created should be in the list of products, and it should have a condition of excellent. The other products should have a condition of poor.
We're now going to implement our first one-to-many relationship, which is between the product and location models (each product will have a single location, and each location can have multiple products). In relational databases, relationships are established using foreign keys, but in C# applications using Entity Framework, they're established using something called navigation properties.
In Entity Framework, each relationship has two ends that describe the type and multiplicity between the two models. Each model contains a navigation property that provides a way to "navigate" the relationship. In a one-to-many relationship, one model contains a reference to a single object (e.g. a product has a single location) and the other model contains a reference to a collection (e.g. a location can have many products). In addition, the model that contains the single reference also has an ID property that acts as the foreign key. In our product-location relationship, then, the product model would contain a LocationId property that holds the value of the ID of the location object in the navigation property.
1. Add the navigation properties to the product and location models, and add the foreign key property to the product model, as shown in the class diagram (2.2OESProductNavigationProperty.png). Navigation properties must be declared as virtual, or Entity Framework won't recognize it as a navigation property. Behind the scenes, Entity Framework uses inheritance to override the navigation properties to add its own functionality.

public virtual Location Location

public virtual ICollection<Product> Products

2. Modify the ProductViewModel's Location property to be of type Location, and add the Locations property, as shown in the class diagram. The Locations property returns the result of calling the repository's GetLocations method.
3. In the ProductView, change the location textbox to a combo box. Bind its ItemsSource to the Locations property, and bind its SelectedItem to the Location property. This populates the combo box with all of the locations in the repository, which is in turn populated with all the locations stored in the database. When the user selects a location from the combo box, the Location navigation property in the view model and model is set to the selected object. Entity Framework then automatically populates the LocationId property with the value of the Id of the selected Location object.
4. Override the ToString method in the location model and return the value of the Name property. This will prevent the default string representation (Namespace.ClassName) from appearing in the combo box.
5. Modify the database initializer so that the products' LocationId is now set instead of the Location. Locations must be created before products, or you will get a referential integrity error when initializing the database. Entity Framework sets the IDs of objects incrementally starting with 1, so you can determine the ID value of any given object by its position in the list.
6. Run the application.
a. Create a new product. The location combo box should be populated with all of the locations in the database. Choose a location and save the product.
b. View all products. The product you created should appear in the list, and its location should be set to the location you chose.
As part of the process of implementing one-to-many-relationships in our particular system, we're going to move the command that launches the process of creating a new product into the MultiProductView. That way, when users are viewing a list of existing products, they'll have access to the command to create a new one right in that same view. And instead of the command opening a new tab in the tab control, it will open in a new window.
1. Create a new window called WorkspaceWindow in the Views folder in the OrderEntrySystem project. Leave the XAML empty. This blank window will act as our template for launching the view to create a new product.
2. In WorkspaceViewModel, add the CloseAction autoproperty as shown in the class diagram (2.2OESWorkspaceCloseAction.png). This will be responsible for removing the view model when the user closes the window.
3. Add the CreateNewProductExecute method, as shown in the class diagram. Put the following code in the method body. This code does several things. First, it creates a product and an associated view model. Then, it creates a WorkspaceWindow to use for showing the correct view, sets the window's properties, and sets the view model's CloseAction to a lambda expression that sets the window's DialogResult to the passed in value; the passed in value represents whether the user wants to accept changes or cancel changes. Then, it creates a ProductView, sets its data context to the view model so the data bindings work correctly, and places the view in the previously created window. It then shows the window as a modal dialog.

ProductViewModel viewModel = new ProductViewModel(new Product(), this.repository);

WorkspaceWindow window = new WorkspaceWindow();
window.Width = 400;
window.Title = viewModel.DisplayName;

viewModel.CloseAction = b => window.DialogResult = b;

ProductView view = new ProductView();
view.DataContext = viewModel;

window.Content = view;
window.ShowDialog();

4. In the CreateCommands method of the MultiProductViewModel, add a new CommandViewModel with a display name of "New..." and a command of a lambda expression that calls the CreateNewProductExecute method. Adding the ellipsis after "New" in the display name lets the user know that clicking the button will bring up a new window or more information; this is common in Windows applications.

this.Commands.Add(new CommandViewModel("New...", new DelegateCommand(p => this.CreateNewProductExecute())));

5. Add the following data template to SharedResources.xaml. This creates a template for presenting a list of commands as a horizontal row of buttons (rather than a vertical column). You should notice that this template is similar to the CommandsTemplate, except it also specifies a panel template for displaying the items horizontally.

<DataTemplate x:Key="HorizontalCommandsTemplate">
 <ItemsControl ItemsSource="{Binding}" HorizontalAlignment="Right">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 <ItemsControl.ItemsPanel>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Button Command="{Binding Path=Command}" Content="{Binding Path=DisplayName}" Height="23" Width="75" Margin="4,4,0,0" />
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</DataTemplate>

6. In the SelectedItemsView, surround the existing StackPanel element with another StackPanel element. Inside the new element and below the existing element, add a new ContentControl element. Bind its Content to the Commands property, and bind its ContentTemplate to the HorizontalCommandsTemplate static resource. This will display the commands as a row of buttons beneath the text displaying the number of items selected.
7. Remove the New product command from the MainWindowViewModel's commands collection. It is no longer needed in the main list of commands because it will appear in the list of products.
8. Run the application.
a. View all products. A button with the text New... should now appear below the list (2.2OESNewCommandResult.png).
b. Click the New... button. A new window showing the ProductView should appear. Create a new product and save it. The product should appear in the products list.
In addition to letting users add new items, they should also be able to edit existing items – maybe a customer has a new email address or a product's description has changed. Editing is a relatively simple thing to implement, as all it requires is a way to find which item the user has selected and open that item in a new window for them to edit.
It should be noted that, with the way we will be implementing editing functionality, users will not be able to cancel edits they make to items, as those changes are propagated to the view model, and therefore the model, immediately upon any text change. In order for users to be able to cancel edits, we would need to make a clone of the object they want to edit and then only update the original version of the object if they accept their changes. This is outside the scope of this class.
1. In the CreateNewProductExecute method, refactor the code that creates the WorkspaceWindow and ProductView and shows the window into a new method called ShowProduct. I recommend doing this using Visual Studio's Extract Method functionality; ensure that the new method returns void and takes single parameter of type ProductViewModel.
2. Add a method for editing existing products.
a. Define a method in MultiProductViewModel called EditProductExecute. Like CreateNewProductExecute, it is private, returns void, and takes no parameters.
b. In the method, get the only selected view model by calling the SingleOrDefault LINQ extension method on the AllProducts collection. The SingleOrDefault method returns the single object that matches the specified predicate; if more than one object matches, it returns null.

ProductViewModel viewModel = this.AllProducts.SingleOrDefault(vm => vm.IsSelected);

c. Then, if the view model is not null, call the ShowProduct method, passing in the view model, and the SaveToDatabase method. If the view model is null, use a message box to show a message to the user to select only one product.
3. In the CreateCommands method, add a new CommandViewModel with a display name of "Edit..." and a command of a lambda expression that calls the EditProductExecute method.
4. Run the application.
a. View all products. An Edit... button should appear next to the New... button.
b. Click the Edit... button without selecting a product. A message box should appear stating that one product needs to be selected.
c. Select multiple products and click the Edit... button. The same message box should appear.
d. Select only one product and click the Edit... button. The product window should appear, and the form fields should be initialized to the product's values. Change at least one of the fields and save. The product's updated value should be reflected in the list view.
We've embedded the command to create a new product in the product list view, and we've given users a way to edit existing products in addition to creating new ones. Now let's add the same functionality for customers and locations.
1. Create a ShowCustomer method in the MultiCustomerViewModel and a ShowLocation method in the MultiLocationViewModel. Model their definition and content after the ShowProduct method.
2. Create a CreateNewCustomerExecute and EditCustomerExecute method in the MultiCustomerViewModel. Model their definition and contents after the create and edit methods in the MultiProductViewModel.
3. Add two commands to the MultiCustomerViewModel – the first calls CreateNewCustomerExecute and the second calls EditCustomerExecute.
4. Create a CreateNewLocationExecute and EditLocationExecute method in the MultiLocationViewModel. Model their definition and contents after the create and edit methods in the MultiProductViewModel.
5. Add two commands to the MultiLocationViewModel – the first calls CreateNewLocationExecute and the second calls EditLocationExecute.
6. Remove the New customer and New location commands from MainWindowViewModel.
7. Run the application.
a. View all customers. A New... and Edit... button should appear below the list.
b. Test the functionality of the New... and Edit... buttons in the same way as you did with products.
c. View all locations. A New... and Edit... button should appear below the list.
d. Test the functionality of the New... and Edit... buttons in the same way as you did with products.
Our next step in migrating our views for creating and editing items is to replace the save button with OK and Cancel buttons. This is more consistent with the conventions of Windows applications and will be more familiar to users.
1. Add the OkExecute and CancelExecute methods to the ProductViewModel, as shown in the class diagram (2.2OESOkCancelExecute.png).
2. In the OkExecute method, call the Save method. Then call the CloseAction delegate and pass in true. This will set the window's DialogResult to true, therefore closing the window and accepting changes.
3. In the CancelExecute method, call the CloseAction delegate and pass in false. This will set the window's DialogResult to false, therefore closing the window and canceling changes.
4. In the CreateCommands method, create two commands for the OK and Cancel buttons. The first has a display name of "OK" and calls the OkExecute method. The second has a display name of "Cancel" and calls the CancelExecute method.
5. In the ProductView, replace the save button with a ContentControl element. Bind its Content to the Commands property, and bind its ContentTemplate to the HorizontalCommandsTemplate static resource. Add the SharedResources.xaml resource dictionary to the user control's resources.
6. Run the application.
a. View all products. Click the New... button. The window will now have two buttons, OK and Cancel in the bottom right corner instead of a Save button.
b. Fill in the fields and click Cancel. The product should not be saved to the repository.
c. Click the New... button again. Fill in the fields and click OK. The product should be saved to the repository and should appear in the list.
Now let's add the same functionality for customers and locations.
1. Add the OkExecute and CancelExecute methods to the CustomerViewModel and LocationViewModel. Their definition and contents are identical to the same methods in the ProductViewModel.
2. Add the two commands to the CustomerViewModel and the LocationViewModel. They are identical to the commands in the ProductViewModel.
3. In the CustomerView and LocationView, replace the save button with a ContentControl element that is identical to that in the ProductView.
4. Run the application.
a. View all customers. Click the New... button. Test the OK and Cancel buttons as you did with products.
b. View all locations. Click the New... button. Test the OK and Cancel buttons as you did with products.
Now that you've fully implemented a one-to-many relationship and built out the creation and editing functionality, we're going to practice with Entity Framework relationships again by creating a new model for categories, adding the necessary view models and views for it, and creating a one-to-many relationship between it and products (a product can have a single category and a category can be associated with many products).
1. Create a new class called Category in the OrderEntryEngine project. Define it as shown in the class diagram (2.2OESCategoryModel.png).
2. Create a new event args class for the category model. Base it on the other event args classes.
3. Create a new class called CategoryViewModel in the ViewModels folder in the OrderEntrySystem project. Model its fields, constructor, properties, and methods on the other view model classes.
4. Create a new user control called CategoryView in the Views folder in the OrderEntrySystem project. Model it on the other views. Users only need to set the Name property.
5. Add a DbSet called Categories to the OrderEntryContext.
6. Add a few categories to the database initializer. Be sure to add them before adding products.
7. In the repository, add an event handler for adding categories and create the four methods for adding, finding, and getting categories. Model them after the similar methods for the other models.
8. Create a new class called MultiCategoryViewModel in the ViewModels folder in the OrderEntrySystem project. Model its fields, constructor, properties, and methods on the other multi view models.
9. Create a new user control called MultiCategoryView in the Views folder in the OrderEntrySystem project. Model it on the other multi views.
10. Add a data template to SharedResources.xaml to bind the CategoryViewModel type to the CategoryView.
11. Add the category lookup to products.
a. Add a navigation property to the product model for its associated category. Also add an ID property for the category's ID value. Remember to make your navigation property virtual.
b. In the ProductViewModel, add a Category property and a Categories property. Model them on the Location and Locations properties.
c. Add a label and a combo box for categories to the ProductView. Model the combo box's bindings on those for the location combo box.
d. Add a column for the product's category to the MultiProductView.
e. In the database initializer, update the products to set the CategoryId for each one.
12. Add a method and a command to the MainWindowViewModel to view all categories.
13. Run the application.
a. View all categories. The categories you initialized should appear in the list. Select one or more categories and ensure that the number of items selected is updated appropriately.
b. Click the New... button. Fill out the field and click OK. The category should be added to the list and saved in the repository and the database.
c. [bookmark: _GoBack]View all products. Edit an existing product. Ensure that the categories combo box is populated correctly. Change the product's category and click OK. Ensure that the product's category is updated in the products list.
