In this assignment, we introduce database support to our application. We'll be using a tool called Entity Framework, which helps to automate the process of interacting with a database in .NET applications.
Entity Framework is an object-relational mapper, or ORM, that automates much of the process for accessing and storing data in a database and eliminates much of the data access code that is usually needed to incorporate a database into an application. In order to use Entity Framework, we first need to install it using the Package Manager Console.
The Package Manager Console lets you use commands to install, uninstall, and update packages from NuGet, which is the open-source package manager for the Microsoft development platform, including .NET. Developers can publish packages on NuGet to make them available to other developers for use in their own applications.
As part of the installation process, the Package Manager Console downloads the requisite DLLs to your solution and adds references to them in the project in which EF was installed.
1. Open the Package Manager Console by clicking on Tools in the top menu bar, hovering over NuGet Package Manager, and clicking on Package Manager Console. The console window should appear at the bottom of the Visual Studio window (typically in the same window as the Error List and Output). You should see a PM> prompt and a blinking cursor.
2. Type the following command into the console and press Enter. This installs Entity Framework in the currently selected project (i.e. whichever one appears in the Default project dropdown).

install-package entityframework

3. In the console window's Default project dropdown, choose a different project and run the command to install Entity Framework. Do the same for the third project.
4. In Solution Explorer, delete the App.config files from the OrderEntryDataAccess and OrderEntryEngine projects. These files were automatically added when you installed Entity Framework. Application configuration files are XML files that give developers control over the way applications run and can be changed as needed. In our case, we only need a configuration file in our start-up project, OrderEntrySystem. We'll be modifying it later.
5. Build the solution. In File Explorer, navigate to the bin/Debug folder of the OrderEntrySystem project. There should be DLLs for EntityFramework and EntityFramework.SqlServer in addition to the OrderEntrySystem.exe, OrderEntryDataAccess.dll, and OrderEntryEngine.dll files. Navigate to the bin/Debug folders of the OrderEntryDataAccess and OrderEntryEngine projects and ensure that the Entity Framework DLLs exist there too.
The first step in setting up Entity Framework to work with our application is creating a context class, which acts as the bridge between your domain classes (i.e. your models) and the database. All context classes inherit from the DbContext class, which does most of the heavy lifting for you. In the case of our Code First application, the context and Entity Framework will create the database for you with a table for each model and a column for each property on the model.
In addition to generating the database, the context is also responsible for converting table data into objects, converting LINQ queries to SQL queries, keeping track of changes to objects, performing CRUD operations in the database based on changes to objects, and managing relationships between objects.
1. Add an auto-property of type int called Id to each model class that does not already have one. This will act as the unique identifier, or primary key, for the corresponding database table.
2. Create the context class.
a. Create a new class called OrderEntryContext in the OrderEntryDataAccess project. Define it as shown in the class diagram (2.1OESOrderEntryContext.png). Each DbSet will correspond to a table in the database.
b. Pass the string "OrderEntryContext" as the parameter when calling base in the constructor.
c. Inside the constructor, call the following method. Calling this method forces the context to run the specified initializer for the database.

Database.Initialize(true);

3. In App.config, add the following code in the entityFramework element. The value of the type property represents the Namespace.ClassName, AssemblyName of the context class. This code tells Entity Framework which class is the context for our application.

<contexts>
 <context type="OrderEntryDataAccess.OrderEntryContext, OrderEntryDataAccess">
 </context>
</contexts>

4. In the Repository class, add a field of type OrderEntryContext called context. Initialize it to a new OrderEntryContext at its definition.
5. Run the application.
a. Open Server Explorer. Open the Data Connections folder. Open the OrderEntryContext connection. The database should contain the tables listed below.
i. __MigrationHistory
ii. Customers
iii. Locations
iv. Products
b. If the Data Connections folder is empty, right-click the folder and choose Add Connection. Type (localdb)\MSSQLLocalDB for the server name. Choose OrderEntryContext from the Select or enter a database name dropdown. Test the connection to ensure it succeeds. Click OK. The OrderEntryContext database should appear in the Data Connections folder.
c. If an error occurs while attempting to connect to the server, double-check that the server name is correct. If it is correct, you might have to install an update to Visual Studio. To do this, click Tools, then Extensions and Updates. Go to Product Updates in the Updates section. Install the update for Microsoft SQL Server data tooling and restart Visual Studio. The previous steps should now work.
d. Unit test
We want to store our database on a remote server rather than on our local server. All this change requires is a simple addition to our application configuration file that specifies the new connection string. Entity Framework will then use this connection string when initializing the database.
1. In App.config, add the following code after the entityFramework element. Replace LastName with your last name in the Initial Catalog. This code tells Entity Framework to use the context named "OrderEntrySystem" to create a database called 0515_392_OrderEntrySystem_LastName on the itstudent.ntc.edu server using the SQL login credentials specified in the User ID and Password. The value of the name property must match the string you passed to base in the constructor of the context class.

<connectionStrings>
 <add name="OrderEntryContext" connectionString="Data Source=itstudent.ntc.edu;Initial Catalog=0515_392_OrderEntrySystem_LastName;Integrated Security=False;User ID=vsorange;Password=orange;" providerName="System.Data.SqlClient" />
</connectionStrings>

2. Run the application.
a. Connect to the itstudent server using SQL Server Management Studio. Log in using the following credentials:
i. Username: vsorange
ii. Password: orange
b. The database 0515_392_OrderEntrySystem_LastName should exist. It should contain the following tables:
i. __MigrationHistory
ii. Customers
iii. Locations
iv. Products
Now that we're generating a database on application start-up, we can initialize that database with a few rows of data. To do this, we'll just refactor our existing object initializers in the Repository class.
1. Create a new class called OrderEntryInitializer in the OrderEntryDataAccess project. Define it as shown in the class diagram (2.1OESOrderEntryInitializer.png).
2. Move all of the object initializers from the Repository constructor to the Seed method. Instead of referring to the private list fields when calling the AddRange method, refer to the context's DbSets.

context.Products.AddRange(products);

You do not need to set the Id property for any objects, as Entity Framework sets those values automatically, just as primary key values are set automatically when the column has an identity specifier.
3. Remove the constructor from the Repository class.
4. Call the context's SaveChanges method after adding each list to the context's DbSet. This tells Entity Framework to update the database with any changes made to objects in the DbSets.
5. In App.config, add the following databaseInitializer element inside the context element. As with the context element, the value of the type property represents the Namespace.ClassName, AssemblyName of the initializer class.

<databaseInitializer type="OrderEntryDataAccess.OrderEntryInitializer, OrderEntryDataAccess" />

6. Run the application. Use SSMS and the vsorange credentials to log on to the itstudent server. Examine the data in the Customers, Products, and Locations tables. The rows should match the objects you initialized in the OrderEntryInitializer's Seed method.
We have data! But it is useless to our application unless our repository, which already has an API that the view models are using to add and save new objects, is connected to the context and has access to its DbSets. Luckily for us, this will be a relatively painless process because we abstracted away the knowledge of how data persistence occurs in our application. We don't have to change any of our view model classes because the Repository class has encapsulated the logic required to add, remove, and save changes to objects in the database. This design is called the repository pattern, and it is one of the most widely used design patterns. It allows us to change the way data is stored – from lists to a database to XML to a web service – without having to modify the business logic in the view model classes.
1. Add methods to get a single object.
a. Add the three GetXXX methods to the Repository class, as shown in the class diagram (2.1OESRepositoryChanges.png).
b. In the body of each method, return the result of calling the Find method on the appropriate DbSet. Pass in the id parameter. This method finds the appropriate object by the value of its Id property.

return this.context.Products.Find(id);

c. Call each GetXXX method from the appropriate ContainsXXX method.

return this.GetProduct(product.Id) != null;
2. Update each of the three AddXXX methods to add the object to the appropriate DbSet instead of the private list.

this.context.Products.Add(product);

3. Update each of the GetProducts, GetCustomers, and GetLocations methods to return a copy of the appropriate DbSet instead of the private list.

return this.context.Products.ToList();

4. We have now implemented the context into the repository, but none of the changes we make will persist in the database unless we explicitly tell Entity Framework to save them. Add the SaveToDatabase method to the Repository, as shown in the class diagram. In the body, call the context's SaveChanges method.
5. Call the SaveToDatabase method in the Save method of the ProductViewModel, CustomerViewModel, and LocationViewModel classes. Call the method after adding the object to the repository.
6. Change the OrderEntryInitializer to inherit from DropCreateDatabaseIfModelChanges<OrderEntryContext> instead of DropCreateDatabaseAlways<OrderEntryContext>. This will prevent the database from being recreated and the initializer from running unless the models have changed (e.g. you added a property to one of the models).
7. Remove the three private lists from the Repository class.
8. Run the application.
a. Create a new product and save it. Then click the View all products button. The product you created should be in the list. Do the same with customers and locations.
b. Close and re-run the application. View all products, customers, and locations. The items you added in the previous step should remain in the list. This is because those objects were saved into the database and can now be persisted across sessions.
[bookmark: _GoBack]We've completed the minimum necessary to connect our application to a database using Entity Framework. However, Entity Framework provides a multitude of ways to customize how your database is created, including using data annotation attributes to specify how columns are created. Entity Framework infers what SQL data type to use based on the C# type, but it can't get very specific. By default, all non-ID columns are nullable, all string properties have a data type of nvarchar(max), all decimal properties have a data type of decimal(18,2), and so on. We'll use a few data annotations to specify data type precision and make columns required.
1. Use data annotation attributes to mark the product's Name property as required with a maximum length of 100 characters.

[Required]
[MaxLength(100)]
public string Name

2. Add attributes to the product model's other properties to fit the specifications listed below.
a. Description: maximum length of 500
b. Price: required
c. Location: maximum length of 100
3. Run and then stop the application. Use SSMS and the vsorange credentials to log on to the itstudent server. Examine the columns of the Products table. The maximum lengths of the Name, Description, and Location columns should match those specified in the annotations. The Price column should be not null.
We're going to switch gears a bit for our last exercise in this assignment. Our list views still represent each object as the full product, customer, or location view, which takes up a lot of space in the window and is generally a terrible user experience. Let's use a GridView to modify how objects are displayed in list view to make it easier for users to view at a glance.
1. In the MultiProductView, add the following grid view inside the ListView element.

<ListView.View>
 <GridView>
 </GridView>
</ListView.View>

2. Add the following GridViewColumn element inside the GridView element. This code specifies that the value of each product's Name property should be shown in a 55-pixel wide column with a header of Name.

<GridViewColumn Header="Name" Width="55" DisplayMemberBinding="{Binding Path=Name}" />

3. Add GridViewColumn elements for the product's Price, Location, and Description properties.
4. Add a GridView and columns to the MultiCustomerView. Include columns for the properties listed below.
a. FirstName
b. LastName
c. Phone
d. Email
e. Address
f. City
g. State
5. Add a GridView and columns to the MultiLocationView. Include columns for the properties listed below.
a. Name
b. Description
c. City
d. State
6. Run the application.
a. Click the View all products button. The products should now be displayed in a grid, with the value of each product's properties displayed in the appropriate column, similar to the image below (2.1OESGridViewColumnResult.png).
b. View the list of customers and locations to ensure they appear in grids as well.
