In this assignment, we'll add support for viewing multiple objects of a particular type (e.g. all products or all customers). We'll also add a repository for saving and storing the objects we create in the user interface.
One feature our application is missing is the ability to see a list of existing products. We'll add this functionality by creating a new view model to hold the business logic of interacting with multiple products and a new view to display multiple products.
1. Create a new class called MultiProductViewModel in the ViewModels folder of the OrderEntrySystem project. Define it as shown in the class diagram (1.3OESMultiProductViewModel.png).
2. In the constructor, instantiate the AllProducts property. Then instantiate at least three ProductViewModel objects with different products and add each view model to the AllProducts collection.
3. Create a new user control called MultiProductView in the Views folder of the OrderEntrySystem project. Add the following ListView element to the existing Grid element. ListView elements allow you to display a collection of data items or objects using different layouts.

<ListView ItemsSource="{Binding Path=AllProducts}" />

4. In SharedResources.xaml, add a data template that binds the MultiProductViewModel type to the MultiProductView.
5. Add a method to show all products.
a. In MainWindowViewModel, define a method called ShowAllProducts. It takes no parameters and returns void.
b. In the method, use the FirstOrDefault extension method to find the first object in the ViewModels collection that is a MultiProductViewModel. If one does not exist, it returns null. Doing this will prevent more than one MultiProductViewModel from being created and added to the collection.

MultiProductViewModel viewModel = this.ViewModels.FirstOrDefault(vm => vm is MultiProductViewModel) as MultiProductViewModel;

c. Then, check if the view model is null. If so, instantiate a new MultiProductViewModel object in the viewModel variable, attach the OnWorkspaceRequestClose method to the view model's RequestClose event, and add the view model to the ViewModels collection.
d. After the if statement, call the ActivateViewModel method.
6. In the MainWindowViewModel's CreateCommands method, add a new command with a display name of "View all products" and a new DelegateCommand that calls the ShowAllProducts method.
7. Run the application. Click the View all products button. A new tab should appear that contains each of the products you instantiated in the MultiProductViewModel constructor. Each of the products should be displayed as the ProductView, with each of the textboxes pre-filled with the product's information. The products appear this way because of the previously defined data template that links the ProductViewModel to the ProductView. We didn't specify how the ListView should display the ProductViewModel objects, so the application defaulted to the view that was specified in the data template.
Now let's add this same functionality for customers.
1. Create a new class called MultiCustomerViewModel. It has the same members as the MultiProductViewModel except that its collection is called AllCustomers instead of AllProducts.
2. In the constructor, instantiate the AllCustomers property. Then instantiate at least three CustomerViewModel objects with different customers and add each to the AllCustomers collection.
3. Create a new user control called MultiCustomerView. Add a ListView element to its existing Grid element and bind the ItemsSource property to the AllCustomers property.
4. Add a new data template to SharedResources.xaml that links the MultiCustomerViewModel type to the MultiCustomerView.
5. Add a method to the MainWindowViewModel called ShowAllCustomers. Model it after the ShowAllProducts method.
6. In the MainWindowViewModel, add a command with a display name of "View all customers" and a new DelegateCommand that calls the ShowAllCustomers method.
7. Run the application. Click the View all customers button. A new tab should appear that contains each of the customers you instantiated in the MultiCustomerViewModel constructor. Each customer should be displayed as the CustomerView.
Our functionality that allows us to view multiple products or customers isn't of much use to us unless we can modify that list by saving new products and customers to a repository. We'll accomplish this by adding a repository class that will store products and customers in lists and will provide a way to save new objects.
1. Create a new class library called OrderEntryDataAccess.
2. Create a class to act as a repository.
a. Create a new class called Repository (or rename the default class) in the OrderEntryDataAccess project. Define it as shown in the class diagram (1.3OESRepository.png).
b. Instantiate the products field at its definition.
c. In the GetProducts method, return a copy of the products list.
d. In the ContainsProduct method, return the result of calling the Contains method on the products list. Pass the product parameter through to the Contains method call.
e. In the AddProduct method, first check if the repository does not contain the passed-in product by calling the ContainsProduct method. If it does not contain the product, add the product to the private list. Otherwise, do nothing.
3. Add a private Repository field to the MainWindowViewModel, ProductViewModel, and MultiProductViewModel classes. Add a Repository parameter to the constructors of the ProductViewModel and MultiProductViewModel classes, and set the field to the parameter in both. Instantiate the MainWindowViewModel's repository field to a new Repository in the constructor.
4. In the constructor of the MultiProductViewModel, remove the code that instantiates products and adds them to the AllProducts collection. Replace it with a LINQ query that creates a new ProductViewModel for each product in the repository's list of products. Then use the result of the query when instantiating the AllProducts collection.

IEnumerable<ProductViewModel> products =
 from p in this.repository.GetProducts()
 select new ProductViewModel(p, this.repository);

this.AllProducts = new ObservableCollection<ProductViewModel>(products);

5. Add saving functionality for products.
a. Modify the ProductViewModel as shown in the class diagram (1.3OESSaveCommand.png).
b. In the getter of the SaveCommand property, use lazy instantiation to instantiate the saveCommand field to a new DelegateCommand that calls the Save method.
c. In the Save method, call the repository's AddProduct method. Pass in the product field.
d. Add a button to the ProductView below the textboxes. Set its Content to "Save", and bind its Command to the SaveCommand property.
6. Run the application. Create a new product and click the Save button. Then click the View all products button. The product you created should be in the list of products.
Now let's add the same functionality for customers.
1. Add a private customers list and AddCustomer, ContainsCustomer, and GetCustomers methods to the Repository class. Model their contents after the product methods.
2. Add a private Repository field and Repository parameter to the constructors of the CustomerViewModel and MultiCustomerViewModel classes. In the constructors, set the field to the parameter.
3. In the MultiCustomerViewModel constructor, remove the customer instantiation code and replace it with a LINQ query that creates a new CustomerViewModel for each customer in the repository's list of customers. Model the query after the one for products.
4. Add the Save method and the SaveCommand to the CustomerViewModel. Model them after the ones in the ProductViewModel.
5. Add a save button to the CustomerView. Model it after the button on the ProductView.
6. Run the application. Create a new customer and click the Save button. Then click the View all customers button. The customer you created should be in the list of customers.
We lost our pre-populated products and customers when we refactored our application to use a repository. Let's add them back by initializing them in the repository and adding them to the private lists.
1. Add a constructor to the Repository class.
2. In the constructor, use an object initializer to create a local list and add products to the list. Then add the local list to the private products list as a range. The structure will look like the following code. Add at least three products.

var products = new List<Product>
{
 new Product { Name = "Product name" }
};

this.products.AddRange(products);

3. Use object initializers to create a local list and add customers to it. Then add the local list to the private customers list. Add at least two customers.
4. Run the application.
a. Click the View all products button. All of the products you initialized should be listed.
b. Click the View all customers button. All of the customers you initialized should be listed.
When you add a new product, it gets saved in the repository but it does not get added to the list of products if the MultiProductView is already open. This is because the view model's collection of all products has already been populated with whatever products were already in the repository, and it does not get updated when a new product is added. We're going to remedy this problem by creating custom events and event arguments to notify the view model when a new product has been added.
1. Create a new class called ProductEventArgs in the OrderEntryEngine project. Define it as shown in the class diagram (1.3OESEventArgs.png). In the constructor, set the Product property to the product parameter.
2. In the repository, add an EventHandler called ProductAdded. Defining the event with the ProductEventArgs type in brackets means that the event will take a ProductEventArgs object as a parameter (instead of EventArgs) when calling the event.

public event EventHandler<ProductEventArgs> ProductAdded;

3. Call the ProductAdded event after adding a product to the products list. Pass in the current object and a new ProductEventArgs object containing the added product. Only call the event if the event is not null.
4. Add the following method to the MultiProductViewModel. This will be the method that executes when the ProductAdded event is called. It takes the added product, creates a view model for it, and adds it to the observable collection. Because the observable collection automatically notifies any properties that are bound to it of any changes, the list view in the MultiProductView will update with the new product once this method executes.

private void OnProductAdded(object sender, ProductEventArgs e)
{
 ProductViewModel viewModel = new ProductViewModel(e.Product);
 this.AllProducts.Add(viewModel);
}

5. In the constructor of the MultiProductViewModel, plug the OnProductAdded method into the repository's ProductAdded event.
6. Run the application.
a. Click the View all products button and leave the tab open.
b. Create a new product and save it.
c. Go back to the View all products tab. The product you saved should appear in the list.
Now let's add the same functionality for customers.
1. Create a new class called CustomerEventArgs in the OrderEntryEngine project. It is almost identical to the ProductEventArgs class but with a Customer property of type Customer. Set the Customer property to the customer parameter in the constructor.
2. Add an EventHandler called CustomerAdded to the repository. Model it after the ProductAdded event.
3. Call the CustomerAdded event after adding a customer to the customers list. Pass in the current object and a new CustomerEventArgs object containing the added customer. Only call the event if it is not null.
4. Add a method called OnCustomerAdded to the MultiCustomerViewModel. Model it after the OnProductAdded method.
5. In the constructor of the MultiCustomerViewModel, plug the OnCustomerAdded method into the repository's CustomerAdded event.
6. Run the application.
a. Click the View all customers button and leave the tab open.
b. Create a new customer and save it.
c. Go back to the View all customers tab. The customer you saved should appear in the list.
Now that our products can be shown in multiple places at once, it would be nice if an update to one of a product's properties would propagate across all views where that product is shown. This functionality is possible (and actually quite simple) to implement because of an existing interface in the .NET framework. This type of feature is very commonly used, so we're going to implement the interface on the base ViewModel class so that all sub-classes can have access to that functionality.
1. Modify the ViewModel class so that it implements the INotifyPropertyChanged interface, as shown in the class diagram (1.3OESPropertyChanged.png). The PropertyChanged event is defined as follows:

public event PropertyChangedEventHandler PropertyChanged;

2. [bookmark: _GoBack]Put the following code inside the OnPropertyChanged method. This code invokes the PropertyChanged event and passes the given property name, which will be something like "Name" or "Description", through in the event arguments.

var handler = this.PropertyChanged;

if (handler != null)
{
 handler(this, new PropertyChangedEventArgs(propertyName));
}

Storing the event in a local variable ensures that the invocation list will not be null even if the event becomes unregistered between the if statement and the invocation of the event. This can happen in multithreaded code.
3. In each of the setters of the ProductViewModel properties, call the OnPropertyChanged method after setting the property value. Pass in the name of the property as a string. Calling this method will raise the view model's PropertyChanged event, which notifies the WPF binding system that the property has been updated. When it receives that notification, the binding system queries the property for the new value and updates any user interface controls that are bound to that property.

public string Name
{
 …
 set
 {
 this.product.Name = value;
 this.OnPropertyChanged("Name");
 }
}

4. Run the application.
a. Create a new product and save it. Leave the tab open.
b. Click the View all products button. Find the product you just created and change the name of the product.
c. Go back to the existing New product tab. The name of the product should be updated to reflect the change you made in the View all products tab.
d. Go through the same process to test each of the product's other properties.
Now let's add the same functionality for customers.
1. In each of the setters of the CustomerViewModel properties, call the OnPropertyChanged method after setting the property value. Pass in the name of the property as a string.
2. Run the application.
a. Create a new customer and save it. Leave the tab open.
b. Click the View all customers button. Find the customer you just created and change the first name.
c. Go back to the existing New customer tab. The first name of the customer should be updated to reflect the change you made in the View all customers tab.
d. Go through the same process to test each of the customer's other properties.
We're going to use the concepts discussed in previous steps to dynamically update a count of the items selected in the view of multiple products; the count will change automatically each time one or more products is selected or de-selected. We'll be combining events, event handlers, the INotifyPropertyChanged functionality, data binding, and XAML property setters to add this feature.
1. Add the isSelected field and IsSelected property to the ProductViewModel as shown in the class diagram (1.3OESNumberOfItemsSelected.png). The property gets and sets the field. Call the OnPropertyChanged event in the setter, and pass in "IsSelected".
2. Add the following style to SharedResources.xaml. This style binds the IsSelected property of each individual item in a list view to the IsSelected property of the view model that the list item represents. Therefore, when a list item is selected or is de-selected, the value of the IsSelected property in the view model will change accordingly.

<Style x:Key="ListViewStyle" TargetType="{x:Type ListViewItem}">
 <Setter Property="IsSelected" Value="{Binding Path=IsSelected, Mode=TwoWay}" />
</Style>

3. In the MultiProductView, bind the ListView element's ItemContainerStyle property to the ListViewStyle static resource.

ItemContainerStyle="{StaticResource ResourceKey=ListViewStyle}"

You can test the binding by setting a breakpoint in the setter of the ProductViewModel's IsSelected property, running the application, viewing all products, and selecting a product. If the breakpoint is hit, you completed the binding correctly.
4. Add the NumberOfItemsSelected property to the MultiProductViewModel as shown in the class diagram. In the getter, return the result of a LINQ query that counts the number of ProductViewModel objects that are selected.

return this.AllProducts.Count(vm => vm.IsSelected);

5. Add the following DockPanel element inside the Grid element of the MultiProductView. The ListView element is your existing ListView; surround the existing ListView element with this new XAML code. This code displays the value of the NumberOfItemsSelected property beneath the existing list view.

<DockPanel>
 <Grid DockPanel.Dock="Bottom">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">
 <TextBlock Text="Number of items selected: " />
 <ContentPresenter Content="{Binding Path=NumberOfItemsSelected}" />
 </StackPanel>
 </Grid>
 <ListView … />
</DockPanel>

6. Add the OnProductViewModelPropertyChanged method to the MultiProductViewModel as shown in the class diagram. Put the following code in the method body. This will notify WPF's binding system that the value of the NumberOfItemsSelected property has changed, which occurred because the IsSelected property of one or more view models has changed. This method will be plugged in to each view model's PropertyChanged event, which will trigger whenever any property is changed – that is why we have to check the value of the property name before calling OnPropertyChanged.

if (e.PropertyName == "IsSelected")
{
 this.OnPropertyChanged("NumberOfItemsSelected");
}

7. In the MultiProductViewModel's constructor and after the LINQ query, plug the OnProductViewModelPropertyChanged method into each view model's PropertyChanged event. The foreach loop must be performed on a List, rather than an IEnumerable, because objects in an IEnumerable collection cannot be modified. The code below shows one way (of several) to accomplish this task.

List<ProductViewModel> products =
 (from p in this.repository.GetProducts()
 select new ProductViewModel(p, this.repository)).ToList();

products.ForEach(pvm => pvm.PropertyChanged += this.OnProductViewModelPropertyChanged);

8. In the OnProductAdded method, plug the OnProductViewModelPropertyChanged method into the view model's PropertyChanged event. Do this before adding the view model to the AllProducts collection. This will attach the method to the event for all new view models that are added after the initial products are loaded.
9. Run the application and view all products. Select one product. The number of items selected should update to 1. Select two products. The number of items selected should update to 2. De-select one of the two products (by Ctrl+clicking on a selected product). The number of items selected should update to 1.
Now let's add the same functionality for customers.
1. Add the isSelected field and IsSelected property to the CustomerViewModel.
2. In the MultiCustomerView, bind the ListView's ItemContainerStyle to the ListViewStyle static resource.
3. Add the NumberOfItemsSelected property to the MultiCustomerViewModel.
4. Add the DockPanel and its new contents (Grid, StackPanel, TextBlock, and ContentPresenter) to the MultiCustomerView. This code is identical to that of the MultiProductView.
5. Add a method call OnCustomerViewModelPropertyChanged to the MultiCustomerViewModel. Its body is identical to that of the MultiProductViewModel.
6. Plug the OnCustomerViewModelPropertyChanged method into the PropertyChanged event of each view model in the MultiCustomerViewModel constructor and the OnCustomerAdded method. Model this code after the code in the MultiProductViewModel.
7. Run the application. Select one customer. The number of items selected should update to 1. Select two customers. The number of items selected should update to 2. De-select one of the two customers (by Ctrl+clicking on a selected customer). The number of items selected should update to 1.
You probably noticed that we used the exact same XAML structure to display the number of items selected in the MultiProductView and the MultiCustomerView. Instead of continually copying and pasting this same code into each multi view we create, we can make it reusable by breaking it out into its own user control. We can then insert the user control into another window or user control, just like we can with other controls, such as buttons, list views, and textboxes.
1. Create a new user control called SelectedItemsView in the Views folder of the OrderEntrySystem project; remove the Views namespace from the .xaml and .xaml.cs files. Copy the StackPanel element and its children from the MultiProductView and paste it into the Grid element in the SelectedItemsView.
2. In the MultiProductView, replace the StackPanel element and its children with the SelectedItemsView user control. In the code below, local refers to the xmlns namespace that is declared in the parent UserControl element. That namespace is typically declared for you when creating user controls in Visual Studio 2015. Ensure that it exists and that it points to the clr-namespace:OrderEntrySystem.

<Grid DockPanel.Dock="Bottom">
 <local:SelectedItemsView />
</Grid>

3. In the MultiCustomerView, replace the StackPanel and its children with the SelectedItemsView user control.
4. Run the application. Ensure that the functionality for automatically updating the number of products and customers selected works as it did before the change.
Let's add a new model to represent locations into our application. To start out, we'll add all of the functionality for viewing, creating, and saving individual locations.
1. Create a class called Location in the Models folder of the OrderEntryEngine project, and define it as shown in the class diagram (1.3OESLocation.png).
2. Run the unit test to ensure the location model is defined correctly.
3. Create a new class called LocationEventArgs in the OrderEntryEngine project. Model it after the event args for products and customers.
4. Add the field, event, and methods for adding new locations to the Repository class, as shown in the class diagram. Model the method bodies after the methods for adding products and customers.
5. Create a class called LocationViewModel in the ViewModels folder of the OrderEntrySystem project, and define it as shown in the class diagram. Model the SaveCommand and IsSelected properties, the Save method, and the constructor body after the ProductViewModel and CustomerViewModel classes. Call OnPropertyChanged in the setter of each property.
6. Run the unit test to ensure the LocationViewModel class is defined correctly.
7. Add a view for locations.
a. Create a new user control called LocationView in the Views folder of the OrderEntrySystem project.
b. Use a grid layout to add a label and textbox for each of the Name, Description, City, and State properties. Bind each textbox's Text to the appropriate property.
c. Add a button to the view and bind its Command to the SaveCommand property.
d. Add a data template to SharedResources.xaml to bind the LocationViewModel type to the LocationView.
8. Add a command for creating a new location.
a. Create a method called CreateNewLocation in the MainWindowViewModel class. Model its definition and body after the CreateNewProduct and CreateNewCustomer methods.
b. In the CreateCommands method, add a new command to the collection of commands. Its display name is "New location" and its command is a new DelegateCommand that calls the CreateNewLocation method.
9. Run the application. Click the New location button. Fill out each of the textboxes and click the Save button. Ensure that the location's properties have been set to the values you entered in the textboxes and that it is saved to the repository.
Now that we can create and save individual locations, let's add in the functionality for viewing multiple locations at once. In addition, we'll add the functionality for dynamically updating the number of items selected.
1. In the constructor of the Repository class, add an object initializer to create at least two location objects and add them to the locations list.
2. Create a new class called MultiLocationViewModel in the ViewModels folder of the OrderEntrySystem project, and define it as shown in the class diagram (1.3OESMultiLocation.png). Model the bodies of the constructor, properties, and methods after their counterparts in the MultiProductViewModel and MultiCustomerViewModel classes.
3. Run the unit test to ensure the MultiLocationViewModel is defined correctly.
4. Create a new user control called MultiLocationView in the Views folder of the OrderEntrySystem project. Model its contents after the MultiProductView and the MultiCustomerView.
5. Add a new data template to SharedResources.xaml to bind the MultiLocationViewModel type to the MultiLocationView.
6. Add a command for viewing all locations.
a. Create a method called ShowAllLocations in the MainWindowViewModel class. Model its definition and body after the ShowAllProducts and ShowAllCustomers methods.
b. In the CreateCommands method, add a new command to the collection of commands. Its display name is "View all locations" and its command is a new DelegateCommand that calls the ShowAllLocations method.
7. Run the application.
a. Click the View all locations button. Ensure that all locations that were initialized in the repository appear in the list view.
b. Select one location. The number of items selected should update to 1. Select two locations. The number of items selected should update to 2. De-select one of the two locations. The number of items selected should update to 1.
c. Without closing the View all locations tab, create a new location and save it. Go back to the View all locations tab and ensure that the newly saved location appears in the list of locations.
