In this assignment, we’re going to work more with XAML resources, including styles, resource dictionaries, and static resources. We're also going to remove the hard-coded New product button and replace it with a list of commands that appear as buttons.
Resource dictionaries are collections of XAML object definitions (e.g. styles and templates) that you expect to use multiple times. Moving these definitions out to a separate file means they become usable across the project instead of just within one file. This is similar to the function CSS files provide for web pages, and it is useful when you want to have consistent styles throughout your application. XAML files need to reference the resource dictionary file before using styles declared within it, just like HTML files need to link to CSS files in order for the styles to apply. Though we don’t have many styles and templates yet, we’re going to move the one we do have out to a resource dictionary file to avoid redundant code in the future.
1. In the OrderEntrySystem project, right-click on the Views folder, hover over Add…, and choose Resource Dictionary. Name the dictionary SharedResources.xaml and click OK. Once the file is created, modify the xmlns:local property to be "clr-namespace:OrderEntrySystem".
2. Move the DataTemplate that binds the ProductViewModel to the ProductView from MainWindow.xaml to SharedResources.xaml. Leave the Window.Resources tag in MainWindow.xaml.
3. In the Window.Resources tag in MainWindow.xaml, add a ResourceDictionary tag and set its Source property to SharedResources.xaml.

<ResourceDictionary Source="SharedResources.xaml" />

4. Run the application and click the New product button. The application should function as it did before completing these steps.
Now that we’ve done the easy one, let’s move our other data template (the one associated with the tab control) into the resource dictionary.
1. Create a new DataTemplate in SharedResources.xaml with a Key of WorkspacesTemplate.

<DataTemplate x:Key="WorkspacesTemplate">

</DataTemplate>

2. Move the TabControl and all of its children from MainWindow.xaml to the WorkspacesTemplate DataTemplate in SharedResources.xaml. Remove the Path property from the ItemsSource binding so that it is empty. This means that the template will keep whatever binding is specified on the element to which the template is applied.

ItemsSource="{Binding}"

3. In MainWindow.xaml, replace the TabControl with the following HeaderedContentControl element. The ContentTemplate binding tells the window to use the WorkspacesTemplate template to display the content; the template specifies the use of a TabControl, so the content will appear as tabs. The Content binding is passed along to the template, which uses that value for the ItemsSource binding. Therefore, the ItemsSource of this headered content control is the ViewModels property.

<HeaderedContentControl Header="Workspaces" Content="{Binding Path=ViewModels}" ContentTemplate="{StaticResource WorkspacesTemplate}" />

4. Run the application and click the New product button. The application should function as it did before completing these steps.
The only XAML resource objects we've worked with so far are templates, which define the pieces that make up a given control. In these next steps, we're going to work with styles, which define the default look and behavior of a given control, to make the headers of the left and right columns more attractive.
1. In MainWindow.xaml, add a HeaderedContentControl element inside the first border, and set its Header property to "Tasks". Add a HeaderedContentControl.Content element inside it and move the newProductButton inside of the HeaderedContentControl.Content element.
2. Add the following HeaderedContentControl.HeaderTemplate element inside the HeaderedContentControl.

<HeaderedContentControl.HeaderTemplate>
 <DataTemplate>
 <Border Background="#BB000088" BorderBrush="LightGray" BorderThickness="1" CornerRadius="5" Margin="4" Padding="4" SnapsToDevicePixels="True">
 <TextBlock FontSize="14" FontWeight="Bold" Foreground="White" HorizontalAlignment="Center" Text="Tasks" />
 </Border>
 </DataTemplate>
</HeaderedContentControl.HeaderTemplate>
3. Run the application. The header of the left column should be dark blue with bolded white text.
4. We also want to use this styling for the headered content control in the right column (the one that contains the tab control for the view models), but having the style define outside of the resource dictionary means that we would have to duplicate it. Let's move it to the resource dictionary and apply it to both controls. Create a new Style element in SharedResources.xaml. Set its Key to MainHeaderStyle and its TargetType to HeaderedContentControl.

<Style x:Key="MainHeaderStyle" TargetType="{x:Type HeaderedContentControl}">

</Style>

5. Setter elements allow you to set values of properties in styles when you wouldn't normally have access to that property. For instance, we need to set the HeaderTemplate property, but we only have access to that if we already have a HeaderedContentControl element. Add the following Setter element inside the Style element.

<Setter Property="HeaderTemplate">
 <Setter.Value>

 </Setter.Value>
</Setter>

6. Move the DataTemplate element and its children from the HeaderedContentControl.HeaderTemplate in MainWindow.xaml to the Setter.Value element in SharedResources.xaml. Remove the HeaderedContentControl.HeaderTemplate element.
7. Modify the Text property of the TextBlock element in the MainHeaderStyle so that it is bound to the Content template binding. The TemplateBinding is a special type of data binding that allows you to reference the property values of the parent control. In this case, the template binding specifies that the element should use the value of the parent control's Content property for use in the current control's Text property.

Text="{TemplateBinding Content}"

8. Bind the Style property of both HeaderedContentControls in MainWindow.xaml to the MainHeaderStyle static resource.

Style="{StaticResource MainHeaderStyle"}

9. Run the application. The dark blue header with bolded white text should appear above both columns. The text of the left column should be Tasks and the text of the right column should be Workspaces.
In addition to defining styles and templates in a shared resource dictionary that can be referenced in other files, you can also define them in the App.xaml file, which makes them available at an application-wide level. When you define a resource in App.xaml, they become available in both XAML and C# code using the Application.Resources property. We'll declare a brush at the application level and use it in our main header style in the resource dictionary.
1. Add the following LinearGradientBrush element inside the Application.Resources element of the App.xaml file. This creates a vertical gradient that blends a light blue and a dark blue at the midpoint of the element to which it is applied.

<LinearGradientBrush x:Key="Brush_HeaderBackground" StartPoint="0.5,0" EndPoint="0.5,1">
 <GradientStop Color="#66000088" Offset="0" />
 <GradientStop Color="#BB000088" Offset="1" />
</LinearGradientBrush>

2. In the MainHeaderStyle in SharedResources.xaml, bind the background of the border to the Brush_HeaderBackground static resource.

Background="{StaticResource Brush_HeaderBackground}"

3. Run the application. The headers of both columns should have a gradient background with a lighter blue at the top and a darker blue at the bottom instead of solid dark blue background.
XAML elements often have dozens of properties available, but we've limited ourselves so far to ones that you might already be familiar with, such as Background, Margin, Padding, etc. Let's take a look at some properties that affect behavior or functionality more than appearance.
1. Add the following Setter element to the MainHeaderStyle in SharedResources.xaml. It should be placed immediately below the existing Setter element. The IsTabStop property specifies whether or not the control is included in the interface's tab navigation (i.e. whether it becomes focused when you tab through the application).

<Setter Property="IsTabStop" Value="False" />

2. [bookmark: _GoBack]Add the following Setter element to the MainHeaderStyle below the IsTabStop setter. This code sets the value of the Template property to the specified template. The purpose of this ControlTemplate is to ensure that the content of a HeaderedContentControl always fills the available vertical space instead of filling only the space needed to fit the content.

<Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type HeaderedContentControl}">
 <DockPanel>
 <ContentPresenter DockPanel.Dock="Top" ContentSource="Header" ContentTemplate="{TemplateBinding HeaderTemplate}" />
 <ContentPresenter ContentSource="Content" ContentTemplate="{TemplateBinding ContentTemplate}" />
 </DockPanel>
 </ControlTemplate>
 </Setter.Value>
</Setter>

3. Run the application. The tab control in the right column should fill the entire vertical space of the window. Press the Tab key to step through the tabbed navigation. The Tasks and Workspaces headers should both be skipped and you should only be able to tab through the left column and the button in the left column.
Now that we've covered the basics of styles, templates, and other XAML resources, we're going to switch gears and continue adding functionality. Specifically, we need to provide users with a way to close the tabs that they open by clicking the New product button. We're going to do this by adding a button to the user interface and attaching a custom command to it. We're going to end up with a framework that functions as though you added a click event handler to the button but includes no code in the code-behind and is flexible and extensible for future development.
1. Create a class for custom commands.
a. Create a new class called DelegateCommand in the OrderEntrySystem project and define it as shown in the class diagram (1.2OESDelegateCommand.png). The ICommand interface is part of the .NET framework; you do not have to define it yourself.
b. In the constructor, first check to see if the command parameter is null. If so, throw an exception with the message "Command was null." Then set the command field to the command parameter. There is no need for an else statement because the execution of the constructor will stop immediately if the exception is thrown, and therefore the line that sets the field will only run if the parameter is not null.
c. In the Execute method, call the Action in the command field and pass the parameter through. This will run the delegate passed to the DelegateCommand instance when it was created.

this.command(parameter);

d. In the CanExecute method, simply return true. This method determines whether or not the command can be run, which is typically reflected in the user interface by a control being enabled or disabled. For now, we assume that the command can always be executed; we will revisit this later to give it more functionality.
e. Define the CanExecuteChanged property using the following code. This event is part of the ICommand interface. This code delegates the event subscription to the CommandManager.RequerySuggested event, which ensures that the WPF commanding infrastructure asks all DelegateCommand objects if they can execute whenever is asks the built-in commands the same question. This is part of the CanExecute functionality discussed in the previous step; again, we will revisit this later.

public event EventHandler CanExecuteChanged
{
 get
 {
 CommandManager.RequerySuggested += value;
 }
 set
 {
 CommandManager.RequerySuggested -= value;
 }
}

2. Create a class for view models that are also workspaces. This class, called WorkspaceViewModel, is intended to represent any view model that will appear in the user interface as a view that could have one or more commands and can be manually closed by the user.
a. Create a new class called WorkspaceViewModel in Framework folder of the OrderEntrySystem project and define it as shown in the class diagram (1.2OESWorkspaceViewModel.png). Modify the namespace so that it is OrderEntrySystem.
b. In the constructor, pass the displayName parameter through to the call to base.
c. In the getter of the CloseCommand property, use lazy instantiation to set the closeCommand field to a new DelegateCommand. Pass a lambda expression that calls the OnRequestClose method as the parameter to the DelegateCommand constructor. Then return the closeCommand field.

if (this.closeCommand == null)
{
 this.closeCommand = new DelegateCommand(p => this.OnRequestClose());
}

return this.closeCommand;

d. In the OnRequestClose method, call the RequestClose event handler after checking to see if it is assigned. Pass in the current object and EventArgs.Empty as the parameters.
3. Incorporate the WorkspaceViewModel class into our existing framework.
a. Have the MainWindowViewModel and ProductViewModel classes inherit from WorkspaceViewModel.
b. In the MainWindowViewModel, change the viewModels field and ViewModels property to be observable collections of WorkspaceViewModels instead of ViewModels.
c. Modify the parameter of the ActivateViewModel method to be of type WorkspaceViewModel instead of ViewModel.
4. Add the following method to the MainWindowViewModel class. This method takes the object that initiated the event this method is attached to (i.e. the object that called the delegate) and removes the object from the collection of view models, thus removing it from the tab control in the user interface.

private void OnWorkspaceRequestClose(object sender, EventArgs e)
{
 this.ViewModels.Remove(sender as WorkspaceViewModel);
}

5. In the CreateNewProduct method, plug the OnWorkspaceRequestClose method in to the view model's RequestClose event handler before adding the view model to the collection. This is the final step in creating the command that closes a workspace – the close command, when executed, calls the OnRequestClose method, which in turn calls the RequestClose event, which calls the OnWorkspaceRequestClose method, which removes the initiating WorkspaceViewModel object from the user interface. All that is left to do is add a button to the user interface and attach the close command to it.
6. Add a close button and set its command.
a. In the WorkspacesTemplate element in SharedResources.xaml, surround the ContentPresenter element with a DockPanel element.
b. Add a Button element inside the DockPanel element. It has the following property values:
i. Content: X
ii. Cursor: Hand
iii. Margin: 4,0,0,0
iv. FontWeight: Bold
v. Height: 16
vi. Width: 16
vii. FontFamily: Courier
viii. FontSize: 9
ix. DockPanel.Dock: Right
c. Bind the button's Command property to the CloseCommand property. This tells the button to execute the contents of the CloseCommand when the button is clicked.
7. Run the application and click the New product button. The tab header should have a button with an X to the right of the display text. Click the X button. The tab should close.
Now that we've seen how we can attach a custom command to a button, let's build on that knowledge to finally get rid of the hard-coded newProductButton. To do this, we're going to create a collection of commands and bind to it in the user interface. We'll also define a template that will display each command as a button.
1. Remove the newProductButton and its click event handler. Also remove the Content element from the HeaderedContentControl. The HeaderedContentControl element can now be self-closing.
2. Create a class to represent commands.
a. Create a new class called CommandViewModel in Framework folder of the OrderEntrySystem project and define it as shown in the class diagram (1.2OESCommandViewModel.png). This class does not need to inherit from WorkspaceViewModel because an object of this type does not need to be closed (and therefore does not need the functionality provided by the WorkspaceViewModel class).
b. In the constructor, pass the displayName parameter through to the call to base.
c. In the constructor, first check to see if the command parameter is null. If so, throw an exception with the message "Command was null." Then set the Command property to the command parameter.
3. Modify the WorkspaceViewModel class to incorporate a collection of commands.
a. Modify the WorkspaceViewModel class as shown in the class diagram (1.2OESWorkspaceViewModelWithCommands.png).
b. Instantiate the commands field at its definition.
c. Call the CreateCommands method in the constructor.
d. Have the Commands property return the commands field.
4. Override the CreateCommands method in MainWindowViewModel. In the method, create a new CommandViewModel and pass "New product" as the display name and a new DelegateCommand object that calls the CreateNewProduct method as the command. Then add the CommandViewModel object to the Commands collection.

this.Commands.Add(new CommandViewModel("New product", new DelegateCommand(p => this.CreateNewProduct())));

5. Add the following element to SharedResources.xaml. This defines a template for showing commands as buttons.

<DataTemplate x:Key="CommandsTemplate">
 <ItemsControl ItemsSource="{Binding}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Button Command="{Binding Path=Command}" Content="{Binding Path=DisplayName}" />
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</DataTemplate>

6. In MainWindow.xaml, bind the Content property of the first HeaderedContentControl to the Commands property and bind the ContentTemplate property to the CommandsTemplate static resource.
7. Run the application. The New product command should appear underneath the Tasks header, just as it did when the button was hard-coded. Click the button. A new tab should appear in the tab control, just as before.
Now let's add some more properties to our product model.
1. Add the following auto-properties to the Product model. Their types are listed in parentheses.
a. Name (string)
b. Description (string)
c. Price (decimal)
2. Add a wrapper property to the ProductViewModel for each of the Name, Description and Price properties in the Product model.
3. Run the [NameHere] and [NameHere] unit tests to ensure that the properties on the Product model and ProductViewModel were defined correctly.
4. Add controls for each property in the user control.
a. Add the following row and column definitions to the ProductView. This will create a structured yet responsive grid into which you can put labels and textboxes.

<Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="4" />
 <ColumnDefinition Width="*" />
</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="4" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>

b. Add a label for each of the four properties. Assign each to go in the first column and one in each of the rows with a height of Auto (e.g. the Name label in the first row, the Description label in the third row, the Location label in the fifth row, etc.).
c. Add a textbox for each of the four properties. Assign each to go in the third column and one in each of the rows with a height of Auto. Bind the Text property of each textbox to the appropriate property based on its associated label (e.g. bind to the Name property in the textbox next to the Name label, etc.). In each binding, set the UpdateSourceTrigger to PropertyChanged.
5. Run the application.
a. Click the New product button. The tab content should contain four labels and four textboxes in a neat and structured grid.
b. Test each of the four textboxes to ensure that each is correctly bound to the appropriate property. Do this by setting a breakpoint in the ProductViewModel property you're testing (Name, for example), and then typing in the name textbox. If your breakpoint is hit, you set up your bindings correctly.
Congratulations! You now have a functional application that employs the model-view-view model pattern. Now obviously, there are many features that we still have to implement (none of the products you make are saved anywhere!), but you have the basics of the pattern down. Let's practice implementing the full tier again by adding customers to the application.
1. Create a new class called Customer in the Models folder in the OrderEntryEngine project. Define it as shown in the class diagram (1.2OESCustomer.png).
2. Create a new class called CustomerViewModel in the ViewModels folder in the OrderEntrySystem project. Define it as shown in the class diagram. This view model is structured almost identically to the ProductViewModel: pass "Customer" in to the constructor's call to base, set the customer field to the customer parameter in the constructor, have each of the properties get and set the associated property of the customer field, and leave the CreateCommands method empty.
3. Run the [NameHere] unit tests to ensure the Customer and CustomerViewModel classes were defined correctly.
4. Create a new user control called CustomerView in the Views folder in the OrderEntrySystem project. It is laid out almost identically to the ProductView: create column and row definitions, add a label and textbox for each property on the view model, bind the text of each textbox to the appropriate property, and put the labels and textboxes in the appropriate columns and rows.
5. Add a data template to SharedResources.xaml that binds the CustomerViewModel type to the CustomerView user control. Model it after the data template that links the ProductViewModel type to the ProductView.
6. Create a method in the MainWindowViewModel class called CreateNewCustomer. Model it after the CreateNewProduct method, but create Customer and CustomerViewModel objects instead of Product and ProductViewModel objects.
7. Add a command to the MainWindowViewModel's Commands collection. Its display name is "New customer", and its command is a new DelegateCommand object that calls the CreateNewCustomer method as its command.
8. Run the application.
a. Run the [NameHere] unit test to ensure the method functions correctly.
b. Click the New customer button. A new tab with the display text Customer should appear. The tab's content should be a series of labels and textboxes (i.e. the CustomerView).
c. Test each of the textboxes to ensure that each is correctly bound to the appropriate property. Do this in the same way that you tested the ProductView.
