This series of assignments will walk you through the implementation of the model-view-view model, or MVVM, architectural design pattern. The MVVM pattern is a variation of Martin Fowler's presentation model pattern; both derive from the model-view-controller (MVC) pattern.
The MVVM pattern was developed specifically to take advantage of features present in Microsoft’s Windows Presentation Foundation (WPF) and Silverlight graphics systems; namely, data binding and commands, which will be covered later in this and future assignments.
The pattern provides a separation of concerns between an application’s data access, business logic, and user interface components. The three core components are the model, the view, and the view model.
Model: The model is the application’s domain model and includes data (fields and properties) and sometimes business and validation logic. Model classes typically represent real-world objects.
View: The view defines the layout and appearance of the application. It is ideally written using only XAML, has little to no code in the code-behind, and contains no business logic.
ViewModel: The view model contains much of the application’s business logic and acts as an intermediary between the view and the model. The view model typically composes a model object and interacts with it by wrapping its data and calling its methods. The view model then serves up model data and other application functionality in a way that is consumable by the view while not having any knowledge of any view that connects to it.
Separating concerns into three layers makes for a loosely coupled design: Views have no idea that view models and models exist, view models and models have no knowledge of views, and the model is even unaware of the view model. This makes it easy to extend the application and make changes to one layer without affecting the others. It also makes the business logic easier to unit test because it is separated from the user interface components.
This course’s assignments will walk you through the creation of a data entry application for products, customers, and orders that uses the MVVM pattern. Let’s get started.
Note: These directions assume that you are using Visual Studio 2015.
1. Open Visual Studio. Create a new WPF Application, and name it OrderEntrySystem. Then rename the solution file to include your last name and the lesson number (e.g. 1.1 OrderEntrySystem LastName).
In order to initialize an application that uses the MVVM pattern, you need to override the default application startup behavior.
1. In App.xaml.cs, override the OnStartup method. In the body of the method, after calling base, create a new instance of the MainWindow class. Then call the Show method on the MainWindow object.
2. Run the application. Two windows should appear. This is because you manually created and showed a window but never removed the default behavior.
3. In App.xaml, remove the StartupUri property. This is the property that determines which user interface component to display when the application starts up. Removing it will prevent two windows from appearing when you start the application.
One of the main features of WPF that makes the MVVM pattern work is data binding, which allows UI controls to bind their content or other properties to properties in a view model. Data binding can be one-way, in which the data value is only presented in the UI such as in a label, and two-way, in which the data is both presented in the UI and can be changed from the UI such as in an editable textbox. In order for binding to work, a view needs a data context, which is an object acting as the source of the binding. This object holds the data which will be displayed in the UI.
1. In MainWindow.xaml.cs, define a full auto-property of type string called DisplayName. In the constructor, set the DisplayName property to “Order Entry System – LastName”, replacing LastName with your last name.
2. In App.xaml.cs, set the MainWindow object’s DataContext property to the window itself. Do this before showing the window.

window.DataContext = window;
3. In the opening Window element of MainWindow.xaml, bind the Title property to the DisplayName property.

Title=”{Binding Path=DisplayName}”
4. Run the application. The window’s title should be set to Order Entry System – LastName. This was done using data binding rather than manually setting the value of the Title property.
The steps above simply show how data binding works. In reality, you won’t make the window its own data context because you want the code-behind (i.e. MainWindow.xaml.cs) to be empty. Instead, we’ll define a ViewModel class and make an instance of that class the window’s data context.
1. Add a new folder called ViewModels to the OrderEntrySystem project. Inside the folder, add a new folder called Framework. Inside the Framework folder, add a new class called ViewModel and define it as shown in the class diagram (1.1OESViewModel.png). Modify the class’s namespace to be OrderEntrySystem. In the constructor, set the DisplayName property to the displayName parameter.
2. In App.xaml.cs, set the window’s DataContext property to a new ViewModel. Pass in “Test” as the display name, replacing LastName with your last name.
3. Remove the DisplayName property from MainWindow.xaml.cs. It should be back to its original state.
4. Run the application. The window’s title should now be Test.
In the steps above, we changed the data context of the MainWindow and changed the content of the window’s title without having to change anything in the MainWindow.xaml file. This should give you just a small taste of the possibilities that data binding can present; we’ll do some more extensive data binding as we continue building this application.
While we’ve made progress toward implementing the V and VM of the MVVM pattern by creating a view model and binding a view to it, the ViewModel class is too abstract to contain much implementation of business logic. Instead, we’ll use it as a base class and create more specific view models that inherit from it.
1. Create a view model for MainWindow logic.
a. In the Framework folder, create a new class called MainWindowViewModel and define it as shown in the class diagram (1.1OESMainWindowViewModel.png). Modify the class’s namespace to be OrderEntrySystem.

An ObservableCollection is a dynamic collection, like a List, to which objects can be added, removed, and updated. Unlike a List, an ObservableCollection automatically raises a notification each time the collection is modified. The notification is sent to the UI, which then updates based on how the collection has changed (e.g. a list box item is added if an object is added to the collection or removed if an object is removed from the collection).
b. Pass “Order Entry System – LastName” in to the constructor’s call to base, replacing LastName with your last name. This will be the view model’s display name.
c. In the getter of the ViewModels property, use lazy instantiation to instantiate the viewModels field and return it.

if (this.viewModels == null)
{
 this.viewModels = new ObservableCollection<ViewModel>();
}

return this.viewModels;

Lazy instantiation, also called lazy initialization or lazy loading, is the strategy of delaying the creation of an object until the first time it is needed.
d. In the CreateNewViewModel method, instantiate a new ViewModel and pass in “Test” as the DisplayName. Then add the view model to the ViewModels collection.
e. In App.xaml.cs, set the window’s DataContext to a new MainWindowViewModel instead of a ViewModel.
Next we’ll write some XAML code in the MainWindow to create a flexible user interface that will grow and shrink with a change in the size of the window.
1. Create three column definitions inside the Grid element in MainWindow.xaml.

<Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”4” />
 <ColumnDefinition Width=”*” />
</Grid.ColumnDefinitions>

When specifying widths, you have three options. A specific number, such as 4 above, will set the width to 4 pixels. Setting it to Auto means the column will take up only as much width as is necessary to fit all of its children. Setting it to an asterisk (*) means the column will take up all remaining available space. So if the window is 500 pixels wide and the first column needs 100 pixels to fit its children, the third column will take up 396 pixels (500 – 100 – 4 = 396).
2. After the column definitions, add a Border element with a width of 100. If an element’s grid row and/or column is not specified, it defaults to the 0th row and/or column. This is what we want, so we won’t specify those values.
3. Add a second Border element and specify that it should go in the third column. Grid rows and columns, like arrays, are 0-indexed, so the third column is referenced using the number 2.

<Border Grid.Column=”2”></Border>
4. Inside the second border, add the following code:

<TabControl IsSynchronizedWithCurrentItem=”True” Margin=”4” ItemSource=”{Binding Path=ViewModels}”>
 <TabControl.ItemTemplate>
 <DataTemplate>
 <ContentPresenter Content=”{Binding Path=DisplayName}” VerticalAlignment=”Center” />
 </DataTemplate>
 </TabControl.ItemTemplate>
</TabControl>

This XAML code does a few things. First, it creates a tabbed control that is bound to the ViewModels collection of the MainWindowViewModel. This means that a tab will be created whenever a view model is added to the collection; the newly created tab is the visual representation of the ViewModel object. Second, it creates a simple data template for the text display of each tab in the control (we will get into much more complex data templates in later assignments). Third, it binds the content of the tab’s text display to the DisplayName property of the current tab’s data context, which will be an object of type ViewModel.
We’ve added some XAML, but we still have to add a way to see our observable collection, tab control, and data templating in action. For now, we’re going to add a hard-coded button that will create a new view model and add it to the collection each time it is clicked.
1. In MainWindow.xaml, add a button inside the first border. Set its properties as follows:
a. Content: New product
b. Name: newProductButton
c. Height: 23
d. VerticalAlignment: Top
2. Give the button a click event handler. In it, cast the DataContext property as a MainWindowViewModel and called the CreateNewViewModel method on the casted object.

(this.DataContext as MainWindowViewModel).CreateNewViewModel();

3. Run the application and click the New product button. A new tab should appear in the tab control with a text display of “Test” (this is the value you gave as the display name when instantiating a new ViewModel in the CreateNewViewModel method). It appeared automatically because the ObservableCollection sent a notification to the UI when the view model object was added. Click the New product button again. Another tab should appear in the tab control which also has a text display of “Test”. Each tab represents a different object in the ViewModels collection.
We have some limited functionality in our application now, but it doesn’t conform to user expectations because the newly created tab isn’t focused after it is created. We’ll add that functionality next.
1. Add the following method to the MainWindowViewModel.

private void ActivateViewModel(ViewModel viewModel)
{
 ICollectionView collectionView = CollectionViewSource.GetDefaultView(this.viewModels);

 if (collectionView != null)
 {
 collectionView.MoveCurrentTo(viewModel);
 }
}

2. Call the ActivateViewModel method at the end of the CreateNewViewModel method.
3. Run the application and click the New product button multiple times. Each newly created tab should become the active one.
So far we’ve dealt with the view and view model components of the MVVM pattern, but we haven’t yet touched the model component. Since this application will be a data entry system for customers ordering products, we’re going to start off by creating a very simple model to represent a product. We’ll also create a view model specifically to “wrap” the product model.
1. Create a new class library called OrderEntryEngine. This new project will contain all model logic; creating it will allow us to separate the model functionality from the unrelated view and view model functionality. If you recall from the MVVM overview earlier, the models should have no knowledge of the other two components.
2. Create a folder called Models in the OrderEntryEngine project. In the folder, create a new class called Product and define it as shown in the class diagram (1.1OESProduct.png). We’re starting out very simple, with a single property, to get you used to the structure. We’ll be adding more properties to the product model later.
3. Run the [NameHere] unit test to ensure the product model functions correctly.
4. In the ViewModels folder in the OrderEntrySystem project, create a new class called ProductViewModel and define it as shown in the class diagram. Pass the string “Product” when calling base in the constructor, which will make “Product” the display name of the view model. In the constructor, set the product field to the product parameter.
5. The Location property of the ProductViewModel will “wrap” the Location property of the product field, rather than wrapping the location field on the ProductViewModel class (which does not exist). Using this structure will allow the user interface to get and set the product’s location through the view model.

public string Location
{
 get
 {
 return this.product.Location;
 }
 set
 {
 this.product.Location = value;
 }
}

6. Run the [NameHere] and [NameHere] unit tests to ensure the ProductViewModel class is set up and functions correctly.
7. Refactor the CreateNewViewModel method.
a. Rename the CreateNewViewModel method to CreateNewProduct. Using Ctrl+R,R to do this will also rename all references to the method and will circumvent compiler errors.
b. In the method, instantiate a Product object and set its location to “Main Warehouse”.
c. Then instantiate a new ProductViewModel instead of a ViewModel. Pass in the product object.
8. Run the [NameHere] unit test to ensure the CreateNewProduct method functions correctly.
9. Run the application and click the New product button. A new tab should appear as before, but the display text should now be “Product” instead of “Test” and the content of the tab should be OrderEntrySystem.ProductViewModel.
All that is left to complete the model-view-view model stack for products is to create a view for creating and editing products. We’ll create what’s called a user control for the product view. A user control is a custom, reusable user interface component that can be added to other views like system controls (like buttons and textboxes) and can contains other controls and resources in the way that windows can. The view will be placed inside the content of the tab control, which is why we need it to be a user control instead of a window.
We want the product view we create to be linked to the ProductViewModel class so that particular view appears every time an instance of the ProductViewModel class is active. We’ll do this using a DataTemplate.
1. Create a Views folder in the OrderEntrySystem project. Move the MainWindow.xaml file into the folder.
2. Right-click on the Views folder, hover over Add…, and choose User Control. Name the user control ProductView and click OK. Once the file is created, open ProductView.xaml and modify the x:Class property to be “OrderEntrySystem.ProductView”. Open ProductView.xaml.cs and modify the namespace to be OrderEntrySystem. We’ll do this with all user controls we create in this application.
3. In the ProductView, add a label with content of “Location:”. Add a textbox to the right of the label, and bind its Text property to the Location property.
4. In MainWindow.xaml, add a Window.Resources tag above the Grid tag. XAML resources are objects, such as data templates and styles, that can be reused in different places in the application.
5. Add the following code inside the Window.Resources tag. This XAML code uses a data template to bind the ProductView user control to the ProductViewModel type so that whenever a ProductViewModel object is instantiated, the ProductView will appear in the user interface. We’ll continue to use data templates like this as we create more models, view models, and views.

<DataTemplate DataType=”{x:Type local:ProductViewModel}”>
 <local:ProductView></local:ProductView>
</DataTemplate>

6. Run the application and click the New product button. The content of the newly created tab control should now be the label and textbox in the ProductView instead of the text OrderEntrySystem.ProductViewModel.
Nice! We’ve now successfully implemented all three components of the MVVM pattern for the product model. However, there’s one last thing to cover before finishing up this session. When you type some text in the textbox in the ProductView and switch to a new tab before tabbing out, you lose all of the changes you made. This is because the source property that the textbox is bound to is only updated when the user tabs out of or otherwise leaves the textbox. We can modify this behavior so that the source property is updated every time a change is made (i.e. when a key is pressed).
1. [bookmark: _GoBack]In the ProductView, add the UpdateSourceTrigger property to the binding of the textbox’s Text property and set it to PropertyChanged.

Text=”{Binding Path=Location, UpdateSourceTrigger=PropertyChanged}”

2. Run the application and click the New product button twice. In the active tab, type some text into the textbox. Switch to the other tab without tabbing out of the textbox. Then switch back to the original tab. The text you typed should remain in the textbox.
