
14
Concurrency and Asynchrony

Most applications need to deal with more than one thing happening at a time (con‐
currency). In this chapter, we start with the essential prerequisites, namely the basics
of threading and tasks, and then describe the principles of asynchrony and C#’s
asynchronous functions in detail.

In Chapter 22, we’ll revisit multithreading in greater detail, and in Chapter 23, we’ll
cover the related topic of parallel programming.

Introduction
The most common concurrency scenarios are:

Writing a responsive user interface
In WPF, mobile, and Windows Forms applications, you must run time-
consuming tasks concurrently with the code that runs your user interface to
maintain responsiveness.

Allowing requests to process simultaneously
On a server, client requests can arrive concurrently and so must be handled in
parallel to maintain scalability. If you use ASP.NET, WCF, or Web Services,
the .NET Framework does this for you automatically. However, you still need
to be aware of shared state (for instance, the effect of using static variables for
caching).

Parallel programming
Code that performs intensive calculations can execute faster on multicore/
multiprocessor computers if the workload is divided between cores (Chap‐
ter 23 is dedicated to this).

Speculative execution
On multicore machines, you can sometimes improve performance by predict‐
ing something that might need to be done, and then doing it ahead of time.
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1 The CLR creates other threads behind the scenes for garbage collection and finalization.

LINQPad uses this technique to speed up the creation of new queries. A varia‐
tion is to run a number of different algorithms in parallel that all solve the
same task. Whichever one finishes first “wins”—this is effective when you can’t
know ahead of time which algorithm will execute fastest.

The general mechanism by which a program can simultaneously execute code is
called multithreading. Multithreading is supported by both the CLR and operating
system, and is a fundamental concept in concurrency. Understanding the basics of
threading, and in particular, the effects of threads on shared state, is therefore essen‐
tial.

Threading
A thread is an execution path that can proceed independently of others.

Each thread runs within an operating system process, which provides an isolated
environment in which a program runs. With a single-threaded program, just one
thread runs in the process’s isolated environment and so that thread has exclusive
access to it. With a multithreaded program, multiple threads run in a single process,
sharing the same execution environment (memory, in particular). This, in part, is
why multithreading is useful: one thread can fetch data in the background, for
instance, while another thread displays the data as it arrives. This data is referred to
as shared state.

Creating a Thread
In Windows Store apps, you cannot create and start threads
directly; instead you must do this via tasks (see “Tasks” on
page 577). Tasks add a layer of indirection that complicates
learning, so the best way to start is with Console applications
(or LINQPad) and create threads directly until you’re com‐
fortable with how they work.

A client program (Console, WPF, UWP, or Windows Forms) starts in a single
thread that’s created automatically by the operating system (the “main” thread).
Here it lives out its life as a single-threaded application, unless you do otherwise, by
creating more threads (directly or indirectly).1

You can create and start a new thread by instantiating a Thread object and calling
its Start method. The simplest constructor for Thread takes a ThreadStart dele‐
gate: a parameterless method indicating where execution should begin. For exam‐
ple:

// NB: All samples in this chapter assume the following namespace imports:
using System;
using System.Threading;
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class ThreadTest
{
  static void Main()
  {
    Thread t = new Thread (WriteY);          // Kick off a new thread
    t.Start();                               // running WriteY()

    // Simultaneously, do something on the main thread.
    for (int i = 0; i < 1000; i++) Console.Write ("x");
  }

  static void WriteY()
  {
    for (int i = 0; i < 1000; i++) Console.Write ("y");
  }
}

// Typical Output:
xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
...

The main thread creates a new thread t on which it runs a method that repeatedly
prints the character y. Simultaneously, the main thread repeatedly prints the charac‐
ter x, as shown in Figure 14-1. On a single-core computer, the operating system
must allocate “slices” of time to each thread (typically 20 ms in Windows) to simu‐
late concurrency, resulting in repeated blocks of x and y. On a multicore or multi‐
processor machine, the two threads can genuinely execute in parallel (subject to
competition by other active processes on the computer), although you still get
repeated blocks of x and y in this example because of subtleties in the mechanism by
which Console handles concurrent requests.

Figure 14-1. Starting a new thread

A thread is said to be preempted at the points where its execu‐
tion is interspersed with the execution of code on another
thread. The term often crops up in explaining why something
has gone wrong!
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Once started, a thread’s IsAlive property returns true, until the point where the
thread ends. A thread ends when the delegate passed to the Thread’s constructor
finishes executing. Once ended, a thread cannot restart.

Each thread has a Name property that you can set for the benefit of debugging. This
is particularly useful in Visual Studio, since the thread’s name is displayed in the
Threads Window and Debug Location toolbar. You can set a thread’s name just
once; attempts to change it later will throw an exception.

The static Thread.CurrentThread property gives you the currently executing
thread:

Console.WriteLine (Thread.CurrentThread.Name);

Join and Sleep
You can wait for another thread to end by calling its Join method:

static void Main()
{
  Thread t = new Thread (Go);
  t.Start();
  t.Join();
  Console.WriteLine ("Thread t has ended!");
}
 
static void Go() { for (int i = 0; i < 1000; i++) Console.Write ("y"); }

This prints “y” 1,000 times, followed by “Thread t has ended!” immediately after‐
ward. You can include a timeout when calling Join, either in milliseconds or as a
TimeSpan. It then returns true if the thread ended or false if it timed out.

Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1));  // Sleep for 1 hour
Thread.Sleep (500);                     // Sleep for 500 milliseconds

Thread.Sleep(0) relinquishes the thread’s current time slice immediately, volun‐
tarily handing over the CPU to other threads. Thread.Yield() does the same thing
—except that it relinquishes only to threads running on the same processor.

Sleep(0) or Yield is occasionally useful in production code
for advanced performance tweaks. It’s also an excellent diag‐
nostic tool for helping to uncover thread safety issues: if
inserting Thread.Yield() anywhere in your code breaks the
program, you almost certainly have a bug.

While waiting on a Sleep or Join, a thread is blocked.

Blocking
A thread is deemed blocked when its execution is paused for some reason, such as
when Sleeping or waiting for another to end via Join. A blocked thread immedi‐
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ately yields its processor time slice, and from then on consumes no processor time
until its blocking condition is satisfied. You can test for a thread being blocked via
its ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;

ThreadState is a flags enum, combining three “layers” of data
in a bitwise fashion. Most values, however, are redundant,
unused, or deprecated. The following extension method strips
a ThreadState to one of four useful values: Unstarted, Run
ning, WaitSleepJoin, and Stopped:

public static ThreadState Simplify (this ThreadState ts)
{
  return ts & (ThreadState.Unstarted |
               ThreadState.WaitSleepJoin |
               ThreadState.Stopped);
}

The ThreadState property is useful for diagnostic purposes,
but unsuitable for synchronization, because a thread’s state
may change in between testing ThreadState and acting on
that information.

When a thread blocks or unblocks, the operating system performs a context switch.
This incurs a small overhead, typically one or two microseconds.

I/O-bound versus compute-bound
An operation that spends most of its time waiting for something to happen is called
I/O-bound—an example is downloading a web page or calling Console.ReadLine.
(I/O-bound operations typically involve input or output, but this is not a hard
requirement: Thread.Sleep is also deemed I/O-bound.) In contrast, an operation
that spends most of its time performing CPU-intensive work is called compute-
bound.

Blocking versus spinning
An I/O-bound operation works in one of two ways: it either waits synchronously on
the current thread until the operation is complete (such as Console.ReadLine,
Thread.Sleep, or Thread.Join), or operates asynchronously, firing a callback when
the operation finishes some time later (more on this later).

I/O-bound operations that wait synchronously spend most of their time blocking a
thread. They may also “spin” in a loop periodically:

while (DateTime.Now < nextStartTime)
  Thread.Sleep (100);

Leaving aside that there are better ways to do this (such as timers or signaling con‐
structs), another option is that a thread may spin continuously:

while (DateTime.Now < nextStartTime);
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In general, this is very wasteful on processor time: as far as the CLR and operating
system are concerned, the thread is performing an important calculation, and so
gets allocated resources accordingly. In effect, we’ve turned what should be an I/O-
bound operation into a compute-bound operation.

There are a couple of nuances with regard spinning versus
blocking. First, spinning very briefly can be effective when you
expect a condition to be satisfied soon (perhaps within a few
microseconds) because it avoids the overhead and latency of a
context switch. The .NET Framework provides special meth‐
ods and classes to assist—see “SpinLock and SpinWait” in
http://albahari.com/threading/.
Second, blocking does not incur a zero cost. This is because
each thread ties up around 1 MB of memory for as long as it
lives and causes an ongoing administrative overhead for the
CLR and operating system. For this reason, blocking can be
troublesome in the context of heavily I/O-bound programs
that need to handle hundreds or thousands of concurrent
operations. Instead, such programs need to use a callback-
based approach, rescinding their thread entirely while waiting.
This is (in part) the purpose of the asynchronous patterns that
we’ll discuss later.

Local Versus Shared State
The CLR assigns each thread its own memory stack so that local variables are kept
separate. In the next example, we define a method with a local variable, then call the
method simultaneously on the main thread and a newly created thread:

static void Main()
{
  new Thread (Go).Start();      // Call Go() on a new thread
  Go();                         // Call Go() on the main thread
}
 
static void Go()
{
  // Declare and use a local variable - 'cycles'
  for (int cycles = 0; cycles < 5; cycles++) Console.Write ('?');
}

A separate copy of the cycles variable is created on each thread’s memory stack,
and so the output is, predictably, ten question marks.
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Threads share data if they have a common reference to the same object instance:

class ThreadTest
{
  bool _done;
 
  static void Main()
  {
    ThreadTest tt = new ThreadTest();   // Create a common instance
    new Thread (tt.Go).Start();
    tt.Go();
  }
 
  void Go()   // Note that this is an instance method
  {
     if (!_done) { _done = true; Console.WriteLine ("Done"); }
  }
}

Because both threads call Go() on the same ThreadTest instance, they share the
_done field. This results in “Done” being printed once instead of twice.

Local variables captured by a lambda expression or anonymous delegate are con‐
verted by the compiler into fields, and so can also be shared:

class ThreadTest
{
  static void Main()
  {
    bool done = false;
    ThreadStart action = () =>
    {
      if (!done) { done = true; Console.WriteLine ("Done"); }
    };
    new Thread (action).Start();
    action();
  }
}

Static fields offer another way to share data between threads:

class ThreadTest
{
  static bool _done;    // Static fields are shared between all threads
                        // in the same application domain.
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    if (!_done) { _done = true; Console.WriteLine ("Done"); }
  }
}

C
o

ncurrency
&

A
synchro

ny

Threading | 565



All three examples illustrate another key concept: that of thread safety (or rather,
lack of it!). The output is actually indeterminate: it’s possible (though unlikely) that
“Done” could be printed twice. If, however, we swap the order of statements in the
Go method, the odds of “Done” being printed twice go up dramatically:

static void Go()
{
  if (!_done) { Console.WriteLine ("Done"); _done = true; }
}

The problem is that one thread can be evaluating the if statement right as the other
thread is executing the WriteLine statement—before it’s had a chance to set done to
true.

Our example illustrates one of many ways that shared writable
state can introduce the kind of intermittent errors for which
multithreading is notorious. We’ll see next how to fix our pro‐
gram with locking; however it’s better to avoid shared state
altogether where possible. We’ll see later how asynchronous
programming patterns help with this.

Locking and Thread Safety
Locking and thread safety are large topics. For a full discus‐
sion, see “Exclusive Locking” on page 870 and “Locking and
Thread Safety” on page 878 in Chapter 22.

We can fix the previous example by obtaining an exclusive lock while reading and
writing to the shared field. C# provides the lock statement for just this purpose:

class ThreadSafe
{
  static bool _done;
  static readonly object _locker = new object();
 
  static void Main()
  {
    new Thread (Go).Start();
    Go();
  }
 
  static void Go()
  {
    lock (_locker)
    {
      if (!_done) { Console.WriteLine ("Done"); _done = true; }
    }
  }
}

When two threads simultaneously contend a lock (which can be upon any
reference-type object, in this case, _locker), one thread waits, or blocks, until the
lock becomes available. In this case, it ensures only one thread can enter its code
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block at a time, and “Done” will be printed just once. Code that’s protected in such
a manner—from indeterminacy in a multithreaded context—is called thread-safe.

Even the act of autoincrementing a variable is not thread-safe:
the expression x++ executes on the underlying processor as
distinct read-increment-write operations. So, if two threads
execute x++ at once outside a lock, the variable may end up
getting incremented once rather than twice (or worse, x could
be torn, ending up with a bitwise-mixture of old and new con‐
tent, under certain conditions).

Locking is not a silver bullet for thread safety—it’s easy to forget to lock around
accessing a field, and locking can create problems of its own (such as deadlocking).

A good example of when you might use locking is around accessing a shared in-
memory cache for frequently accessed database objects in an ASP.NET application.
This kind of application is simple to get right, and there’s no chance of deadlocking.
We give an example in “Thread Safety in Application Servers” on page 882 in Chap‐
ter 22.

Passing Data to a Thread
Sometimes you’ll want to pass arguments to the thread’s startup method. The easi‐
est way to do this is with a lambda expression that calls the method with the desired
arguments:

static void Main()
{
  Thread t = new Thread ( () => Print ("Hello from t!") );
  t.Start();
}

static void Print (string message) { Console.WriteLine (message); }

With this approach, you can pass in any number of arguments to the method. You
can even wrap the entire implementation in a multistatement lambda:

new Thread (() =>
{
  Console.WriteLine ("I'm running on another thread!");
  Console.WriteLine ("This is so easy!");
}).Start();

Lambda expressions didn’t exist prior to C# 3.0. So you might also come across an
old-school technique, which is to pass an argument into Thread’s Start method:

static void Main()
{
  Thread t = new Thread (Print);
  t.Start ("Hello from t!");
}

static void Print (object messageObj)
{
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  string message = (string) messageObj;   // We need to cast here
  Console.WriteLine (message);
}

This works because Thread’s constructor is overloaded to accept either of two dele‐
gates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

The limitation of ParameterizedThreadStart is that it accepts only one argument.
And because it’s of type object, it usually needs to be cast.

Lambda expressions and captured variables
As we saw, a lambda expression is the most convenient and powerful way to pass
data to a thread. However, you must be careful about accidentally modifying cap‐
tured variables after starting the thread. For instance, consider the following:

for (int i = 0; i < 10; i++)
  new Thread (() => Console.Write (i)).Start();

The output is nondeterministic! Here’s a typical result:

0223557799

The problem is that the i variable refers to the same memory location throughout
the loop’s lifetime. Therefore, each thread calls Console.Write on a variable whose
value may change as it is running! The solution is to use a temporary variable as
follows:

for (int i = 0; i < 10; i++)
{
  int temp = i;
  new Thread (() => Console.Write (temp)).Start();
}

Each of the digits 0 to 9 is then written exactly once. (The ordering is still undefined
because threads may start at indeterminate times.)

This is analogous to the problem we described in “Captured
Variables” on page 366 in Chapter 8. The problem is just as
much about C#’s rules for capturing variables in for loops as
it is about multithreading.

This problem also applies to foreach loops prior to C# 5.

Variable temp is now local to each loop iteration. Therefore, each thread captures a
different memory location and there’s no problem. We can illustrate the problem in
the earlier code more simply with the following example:

string text = "t1";
Thread t1 = new Thread ( () => Console.WriteLine (text) );

text = "t2";
Thread t2 = new Thread ( () => Console.WriteLine (text) );
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t1.Start(); t2.Start();

Because both lambda expressions capture the same text variable, t2 is printed twice.

Exception Handling
Any try/catch/finally blocks in effect when a thread is created are of no relevance
to the thread when it starts executing. Consider the following program:

public static void Main()
{
  try
  {
    new Thread (Go).Start();
  }
  catch (Exception ex)
  {
    // We'll never get here!
    Console.WriteLine ("Exception!");
  }
}

static void Go() { throw null; }   // Throws a NullReferenceException

The try/catch statement in this example is ineffective, and the newly created
thread will be encumbered with an unhandled NullReferenceException. This
behavior makes sense when you consider that each thread has an independent exe‐
cution path.

The remedy is to move the exception handler into the Go method:

public static void Main()
{
   new Thread (Go).Start();
}

static void Go()
{
  try
  {
    ...
    throw null;    // The NullReferenceException will get caught below
    ...
  }
  catch (Exception ex)
  {
    Typically log the exception, and/or signal another thread
    that we've come unstuck
    ...
  }
}

You need an exception handler on all thread entry methods in production applica‐
tions—just as you do (usually at a higher level, in the execution stack) on your main
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thread. An unhandled exception causes the whole application to shut down. With
an ugly dialog box!

In writing such exception handling blocks, rarely would you
ignore the error: typically, you’d log the details of the excep‐
tion, and then perhaps display a dialog box allowing the user
to automatically submit those details to your web server. You
then might choose to restart the application, because it’s pos‐
sible that an unexpected exception might leave your program
in an invalid state.

Centralized exception handling
In WPF, UWP, and Windows Forms applications, you can subscribe to “global”
exception handling events, Application.DispatcherUnhandledException and
Application.ThreadException, respectively. These fire after an unhandled excep‐
tion in any part of your program that’s called via the message loop (this amounts to
all code that runs on the main thread while the Application is active). This is useful
as a backstop for logging and reporting bugs (although it won’t fire for unhandled
exceptions on non-UI threads that you create). Handling these events prevents the
program from shutting down, although you may choose to restart the application to
avoid the potential corruption of state that can follow from (or that led to) the
unhandled exception.

AppDomain.CurrentDomain.UnhandledException fires on any unhandled exception
on any thread, but since CLR 2.0, the CLR forces application shutdown after your
event handler completes. However, you can prevent shutdown by adding the fol‐
lowing to your application configuration file:

<configuration>
  <runtime>
    <legacyUnhandledExceptionPolicy enabled="1" />
  </runtime>
</configuration>

This can be useful in programs that host multiple application domains (Chap‐
ter 24): if an unhandled exception occurs in a nondefault application domain, you
can destroy and re-create the offending domain rather than restarting the whole
application.

Foreground Versus Background Threads
By default, threads you create explicitly are foreground threads. Foreground threads
keep the application alive for as long as any one of them is running, whereas back‐
ground threads do not. Once all foreground threads finish, the application ends, and
any background threads still running abruptly terminate.

A thread’s foreground/background status has no relation to its
priority (allocation of execution time).
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You can query or change a thread’s background status using its IsBackground
property:

static void Main (string[] args)
{
  Thread worker = new Thread ( () => Console.ReadLine() );
  if (args.Length > 0) worker.IsBackground = true;
  worker.Start();
}

If this program is called with no arguments, the worker thread assumes foreground
status and will wait on the ReadLine statement for the user to press Enter. Mean‐
while, the main thread exits, but the application keeps running because a fore‐
ground thread is still alive. On the other hand, if an argument is passed to Main(),
the worker is assigned background status, and the program exits almost immedi‐
ately as the main thread ends (terminating the ReadLine).

When a process terminates in this manner, any finally blocks in the execution
stack of background threads are circumvented. If your program employs finally
(or using) blocks to perform cleanup work such as deleting temporary files, you can
avoid this by explicitly waiting out such background threads upon exiting an appli‐
cation, either by joining the thread, or with a signaling construct (see “Signaling” on
page 572). In either case, you should specify a timeout, so you can abandon a renegade
thread should it refuse to finish, otherwise your application will fail to close without
the user having to enlist help from the Task Manager.

Foreground threads don’t require this treatment, but you must take care to avoid
bugs that could cause the thread not to end. A common cause for applications fail‐
ing to exit properly is the presence of active foreground threads.

Thread Priority
A thread’s Priority property determines how much execution time it gets relative
to other active threads in the operating system, on the following scale:

enum ThreadPriority { Lowest, BelowNormal, Normal, AboveNormal, Highest }

This becomes relevant when multiple threads are simultaneously active. Elevating a
thread’s priority should be done with care as it can starve other threads. If you want
a thread to have higher priority than threads in other processes, you must also ele‐
vate the process priority using the Process class in System.Diagnostics:

using (Process p = Process.GetCurrentProcess())
  p.PriorityClass = ProcessPriorityClass.High;

This can work well for non-UI processes that do minimal work and need low
latency (the ability to respond very quickly) in the work they do. With compute-
hungry applications (particularly those with a user interface), elevating process pri‐
ority can starve other processes, slowing down the entire computer.
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Signaling
Sometimes you need a thread to wait until receiving notification(s) from other
thread(s). This is called signaling. The simplest signaling construct is ManualReset
Event. Calling WaitOne on a ManualResetEvent blocks the current thread until
another thread “opens” the signal by calling Set. In the following example, we start
up a thread that waits on a ManualResetEvent. It remains blocked for two seconds
until the main thread signals it:

var signal = new ManualResetEvent (false);

new Thread (() =>
{
  Console.WriteLine ("Waiting for signal...");
  signal.WaitOne();
  signal.Dispose();
  Console.WriteLine ("Got signal!");
}).Start();

Thread.Sleep(2000);
signal.Set();        // "Open" the signal

After calling Set, the signal remains open; it may be closed again by calling Reset.

ManualResetEvent is one of several signaling constructs provided by the CLR; we
cover all of them in detail in Chapter 22.

Threading in Rich-Client Applications
In WPF, UWP, and Windows Forms applications, executing long-running opera‐
tions on the main thread makes the application unresponsive, because the main
thread also processes the message loop that performs rendering and handles key‐
board and mouse events.

A popular approach is to start up “worker” threads for time-consuming operations.
The code on a worker thread runs a time-consuming operation and then updates
the UI when complete. However, all rich-client applications have a threading model
whereby UI elements and controls can be accessed only from the thread that created
them (typically the main UI thread). Violating this causes either unpredictable
behavior, or an exception to be thrown.

Hence when you want to update the UI from a worker thread, you must forward the
request to the UI thread (the technical term is marshal). The low-level way to do
this is as follows (later, we’ll discuss other solutions that build on these):

• In WPF, call BeginInvoke or Invoke on the element’s Dispatcher object.

• In UWP apps, call RunAsync or Invoke on the Dispatcher object.

• In Windows Forms, call BeginInvoke or Invoke on the control.
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All of these methods accept a delegate referencing the method you want to run.
BeginInvoke/RunAsync work by enqueuing the delegate to the UI thread’s message
queue (the same queue that handles keyboard, mouse, and timer events). Invoke
does the same thing, but then blocks until the message has been read and processed
by the UI thread. Because of this, Invoke lets you get a return value back from the
method. If you don’t need a return value, BeginInvoke/RunAsync are preferable in
that they don’t block the caller and don’t introduce the possibility of deadlock (see
“Deadlocks” on page 876 in Chapter 22).

You can imagine, that when you call Application.Run, the
following pseudocode executes:

while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke message -> execute delegate
     User Invoke message -> execute delegate & post result
 }

It’s this kind of loop that enables a worker thread to marshal a
delegate for execution onto the UI thread.

To demonstrate, suppose that we have a WPF window that contains a text box
called txtMessage, whose content we wish a worker thread to update after perform‐
ing a time-consuming task (which we will simulate by calling Thread.Sleep).
Here’s how we’d do it:

partial class MyWindow : Window
{
  public MyWindow()
  {
    InitializeComponent();
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
    Action action = () => txtMessage.Text = message;
    Dispatcher.BeginInvoke (action);
  }
}

Running this results in a responsive window appearing immediately. Five seconds
later, it updates the text box. The code is similar for Windows Forms, except that we
call the (Form’s) BeginInvoke method instead:
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  void UpdateMessage (string message)
  {
    Action action = () => txtMessage.Text = message;
    this.BeginInvoke (action);
  }

Multiple UI Threads
It’s possible to have multiple UI threads if they each own different windows. The
main scenario is when you have an application with multiple top-level windows,
often called a Single Document Interface (SDI) application, such as Microsoft Word.
Each SDI window typically shows itself as a separate “application” on the taskbar
and is mostly isolated, functionally, from other SDI windows. By giving each such
window its own UI thread, each window can be made more responsive with respect
to the others.

Synchronization Contexts
In the System.ComponentModel namespace, there’s an abstract class called Synchro
nizationContext that enables the generalization of thread marshaling.

The rich-client APIs for mobile and desktop (UWP, WPF, and Windows Forms)
each define and instantiate SynchronizationContext subclasses, which you can
obtain via the static property SynchronizationContext.Current (while running on
a UI thread). Capturing this property lets you later “post” to UI controls from a
worker thread:

partial class MyWindow : Window
{
  SynchronizationContext _uiSyncContext;

  public MyWindow()
  {
    InitializeComponent();
    // Capture the synchronization context for the current UI thread:
    _uiSyncContext = SynchronizationContext.Current;
    new Thread (Work).Start();
  }

  void Work()
  {
    Thread.Sleep (5000);           // Simulate time-consuming task
    UpdateMessage ("The answer");
  }

  void UpdateMessage (string message)
  {
    // Marshal the delegate to the UI thread:
    _uiSyncContext.Post (_ => txtMessage.Text = message, null);
  }
}
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This is useful because the same technique works with all rich-client User Interface
APIs (SynchronizationContext also has an ASP.NET specialization where it serves
a more subtle role, ensuring that page processing events are processed sequentially
following asynchronous operations, and to preserve the HttpContext).

Calling Post is equivalent to calling BeginInvoke on a Dispatcher or Control;
there’s also a Send method, which is equivalent to Invoke.

Framework 2.0 introduced the BackgroundWorker class, which
used the SynchronizationContext class to make the job of
managing worker threads in rich-client applications a little
easier. BackgroundWorker has since been made redundant by
the Tasks and asynchronous functions, which as we’ll see, also
leverage SynchronizationContext.

The Thread Pool
Whenever you start a thread, a few hundred microseconds are spent organizing
such things as a fresh local variable stack. The thread pool cuts this overhead by
having a pool of pre-created recyclable threads. Thread pooling is essential for effi‐
cient parallel programming and fine-grained concurrency; it allows short opera‐
tions to run without being overwhelmed with the overhead of thread startup.

There are a few things to be wary of when using pooled threads:

• You cannot set the Name of a pooled thread, making debugging more difficult
(although you can attach a description when debugging in Visual Studio’s
Threads window).

• Pooled threads are always background threads.
• Blocking pooled threads can degrade performance (see “Hygiene in the thread

pool” on page 576).

You are free to change the priority of a pooled thread—it will be restored to normal
when released back to the pool.

You can query if you’re currently executing on a pooled thread via the property
Thread.CurrentThread.IsThreadPoolThread.

Entering the thread pool
The easiest way to explicitly run something on a pooled thread is to use Task.Run
(we’ll cover this in more detail in the following section):

// Task is in System.Threading.Tasks
Task.Run (() => Console.WriteLine ("Hello from the thread pool"));

As tasks didn’t exist prior to Framework 4.0, a common alternative is to call Thread
Pool.QueueUserWorkItem:

ThreadPool.QueueUserWorkItem (notUsed => Console.WriteLine ("Hello"));
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The following use the thread pool implicitly:

• WCF, Remoting, ASP.NET, and ASMX Web Services
application servers

• System.Timers.Timer and System.Threading.Timer
• The parallel programming constructs that we describe in

Chapter 23

• The (now redundant) BackgroundWorker class
• Asynchronous delegates (also now redundant)

Hygiene in the thread pool
The thread pool serves another function, which is to ensure that a temporary excess
of compute-bound work does not cause CPU oversubscription. Oversubscription is
the condition of there being more active threads than CPU cores, with the operating
system having to time-slice threads. Oversubscription hurts performance because
time-slicing requires expensive context switches and can invalidate the CPU caches
that have become essential in delivering performance to modern processors.

The CLR avoids oversubscription in the thread pool by queuing tasks and throttling
their startup. It begins by running as many concurrent tasks as there are hardware
cores, and then tunes the level of concurrency via a hill-climbing algorithm, contin‐
ually adjusting the workload in a particular direction. If throughput improves, it
continues in the same direction (otherwise it reverses). This ensures that it always
tracks the optimal performance curve—even in the face of competing process activ‐
ity on the computer.

The CLR’s strategy works best if two conditions are met:

• Work items are mostly short-running (<250ms, or ideally <100ms), so that the
CLR has plenty of opportunities to measure and adjust.

• Jobs that spend most of their time blocked do not dominate the pool.

Blocking is troublesome because it gives the CLR the false idea that it’s loading up
the CPU. The CLR is smart enough to detect and compensate (by injecting more
threads into the pool), although this can make the pool vulnerable to subsequent
oversubscription. It also may introduce latency, as the CLR throttles the rate at
which it injects new threads, particularly early in an application’s life (more so on
client operating systems where it favors lower resource consumption).

Maintaining good hygiene in the thread pool is particularly relevant when you want
to fully utilize the CPU (e.g., via the parallel programming APIs in Chapter 23).
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Tasks
A thread is a low-level tool for creating concurrency, and as such it has limitations.
In particular:

• While it’s easy to pass data into a thread that you start, there’s no easy way to
get a “return value” back from a thread that you Join. You have to set up some
kind of shared field. And if the operation throws an exception, catching and
propagating that exception is equally painful.

• You can’t tell a thread to start something else when it’s finished; instead you
must Join it (blocking your own thread in the process).

These limitations discourage fine-grained concurrency; in other words, they make it
hard to compose larger concurrent operations by combining smaller ones (some‐
thing essential for the asynchronous programming that we’ll look at in following
sections). This in turn leads to greater reliance on manual synchronization (locking,
signaling, and so on) and the problems that go with it.

The direct use of threads also has performance implications that we discussed in
“The Thread Pool” on page 575. And should you need to run hundreds or thou‐
sands of concurrent I/O-bound operations, a thread-based approach consumes
hundreds or thousands of MB of memory purely in thread overhead.

The Task class helps with all of these problems. Compared to a thread, a Task is
higher-level abstraction—it represents a concurrent operation that may or may not
be backed by a thread. Tasks are compositional (you can chain them together
through the use of continuations). They can use the thread pool to lessen startup
latency, and with a TaskCompletionSource, they can leverage a callback approach
that avoids threads altogether while waiting on I/O-bound operations.

The Task types were introduced in Framework 4.0 as part of the parallel program‐
ming library. However, they have since been enhanced (through the use of awaiters)
to play equally well in more general concurrency scenarios, and are backing types
for C#’s asynchronous functions.

In this section, we’ll ignore the features of tasks that are aimed
specifically at parallel programming and cover them instead in
Chapter 23.

Starting a Task
From Framework 4.5, the easiest way to start a Task backed by a thread is with the
static method Task.Run (the Task class is in the System.Threading.Tasks name‐
space). Simply pass in an Action delegate:

Task.Run (() => Console.WriteLine ("Foo"));
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The Task.Run method was introduced in Framework 4.5. In Framework 4.0, you
can accomplish the same thing by calling Task.Factory.StartNew. (The former is
mostly a shortcut for the latter.)

Tasks use pooled threads by default, which are background
threads. This means that when the main thread ends, so do
any tasks that you create. Hence, to run these examples from a
Console application, you must block the main thread after
starting the task (for instance, by Waiting the task or by call‐
ing Console.ReadLine):

static void Main()
{
  Task.Run (() => Console.WriteLine ("Foo"));
  Console.ReadLine();
 }

In the book’s LINQPad companion samples, Console.Read
Line is omitted because the LINQPad process keeps back‐
ground threads alive.

Calling Task.Run in this manner is similar to starting a thread as follows (except for
the thread pooling implications that we’ll discuss shortly):

new Thread (() => Console.WriteLine ("Foo")).Start();

Task.Run returns a Task object that we can use to monitor its progress, rather like a
Thread object. (Notice, however, that we didn’t call Start after calling Task.Run
because this method creates “hot” tasks; you can instead use Task’s constructor to
create “cold” tasks, although this is rarely done in practice.)

You can track a task’s execution status via its Status property.

Wait
Calling Wait on a task blocks until it completes and is the equivalent of calling Join
on a thread:

Task task = Task.Run (() =>
{
  Thread.Sleep (2000);
  Console.WriteLine ("Foo");
});
Console.WriteLine (task.IsCompleted);  // False
task.Wait();  // Blocks until task is complete

Wait lets you optionally specify a timeout and a cancellation token to end the wait
early (see “Cancellation” on page 606).

Long-running tasks
By default, the CLR runs tasks on pooled threads, which is ideal for short-running
compute-bound work. For longer-running and blocking operations (such as our
preceding example), you can prevent use of a pooled thread as follows:
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Task task = Task.Factory.StartNew (() => ...,
                                   TaskCreationOptions.LongRunning);

Running one long-running task on a pooled thread won’t
cause trouble; it’s when you run multiple long-running tasks
in parallel (particularly ones that block) that performance can
suffer. And in that case, there are usually better solutions than
TaskCreationOptions.LongRunning:

• If the tasks are I/O-bound, TaskCompletionSource and
asynchronous functions let you implement concurrency
with callbacks (continuations) instead of threads.

• If the tasks are compute-bound, a producer/consumer
queue lets you throttle the concurrency for those tasks,
avoiding starvation for other threads and processes (see
“Writing a Producer/Consumer Queue” on page 950 in
Chapter 23).

Returning Values
Task has a generic subclass called Task<TResult> that allows a task to emit a return
value. You can obtain a Task<TResult> by calling Task.Run with a Func<TResult>
delegate (or a compatible lambda expression) instead of an Action:

Task<int> task = Task.Run (() => { Console.WriteLine ("Foo"); return 3; });
// ...

You can obtain the result later by querying the Result property. If the task hasn’t
yet finished, accessing this property will block the current thread until the task
finishes:

int result = task.Result;      // Blocks if not already finished
Console.WriteLine (result);    // 3

In the following example, we create a task that uses LINQ to count the number of
prime numbers in the first three million (+2) integers:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n =>
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

Console.WriteLine ("Task running...");
Console.WriteLine ("The answer is " + primeNumberTask.Result);

This writes “Task running...”, and then a few seconds later, writes the answer of
216815.

Task<TResult> can be thought of as a “future,” in that it
encapsulates a Result that becomes available later in time.

Interestingly, when Task and Task<TResult> first debuted in
an early CTP, the latter was actually called Future<TResult>.
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Exceptions
Unlike with threads, tasks conveniently propagate exceptions. So, if the code in
your task throws an unhandled exception (in other words, if your task faults), that
exception is automatically re-thrown to whoever calls Wait()—or accesses the
Result property of a Task<TResult>:

// Start a Task that throws a NullReferenceException:
Task task = Task.Run (() => { throw null; });
try
{
  task.Wait();
}
catch (AggregateException aex)
{
  if (aex.InnerException is NullReferenceException)
    Console.WriteLine ("Null!");
  else
    throw;
}

(The CLR wraps the exception in an AggregateException in order to play well with
parallel programming scenarios; we discuss this in Chapter 23.)

You can test for a faulted task without re-throwing the exception via the IsFaulted
and IsCanceled properties of the Task. If both properties return false, no error
occurred; if IsCanceled is true, an OperationCanceledException was thrown for
that task (see “Cancellation” on page 606); if IsFaulted is true, another type of excep‐
tion was thrown and the Exception property will indicate the error.

Exceptions and autonomous tasks
With autonomous “set-and-forget” tasks (those for which you don’t rendezvous via
Wait() or Result, or a continuation that does the same), it’s good practice to
explicitly exception-handle the task code to avoid silent failure, just as you would
with a thread.

Unhandled exceptions on autonomous tasks are called unobserved exceptions and in
CLR 4.0, they would actually terminate your program (the CLR would re-throw the
exception on the finalizer thread when the task dropped out of scope and was
garbage collected). This was helpful in indicating that a problem had occurred that
you might not have been aware of; however the timing of the error could be decep‐
tive in that the garbage collector can lag significantly behind the offending task.
Hence, when it was discovered that this behavior complicated certain patterns of
asynchrony (see “Parallelism” on page 600 and “WhenAll” on page 611), it was dropped
in CLR 4.5.
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Ignoring exceptions is fine when an exception solely indicates
a failure to obtain a result that you’re no longer interested in.
For example, if a user cancels a request to download a web
page, we wouldn’t care if it turns out that the web page didn’t
exist.
Ignoring exceptions is problematic when an exception indi‐
cates a bug in your program, for two reasons:

• The bug may have left your program in an invalid state.
• More exceptions may occur later as a result of the bug,

and failure to log the initial error can make diagnosis dif‐
ficult.

You can subscribe to unobserved exceptions at a global level via the static event
TaskScheduler.UnobservedTaskException; handling this event and logging the
error can make good sense.

There are a couple of interesting nuances on what counts as unobserved:

• Tasks waited upon with a timeout will generate an unobserved exception if the
faults occurs after the timeout interval.

• The act of checking a task’s Exception property after it has faulted makes the
exception “observed.”

Continuations
A continuation says to a task, “when you’ve finished, continue by doing something
else.” A continuation is usually implemented by a callback that executes once upon
completion of an operation. There are two ways to attach a continuation to a task.
The first was introduced in Framework 4.5 and is particularly significant because
it’s used by C#’s asynchronous functions, as we’ll see soon. We can demonstrate it
with the prime number counting task that we wrote a short while ago in “Returning
Values” on page 579:

Task<int> primeNumberTask = Task.Run (() =>
  Enumerable.Range (2, 3000000).Count (n =>
    Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

var awaiter = primeNumberTask.GetAwaiter();
awaiter.OnCompleted (() =>
{
  int result = awaiter.GetResult();
  Console.WriteLine (result);       // Writes result
 });

Calling GetAwaiter on the task returns an awaiter object whose OnCompleted
method tells the antecedent task (primeNumberTask) to execute a delegate when it
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finishes (or faults). It’s valid to attach a continuation to an already-completed task,
in which case the continuation will be scheduled to execute right away.

An awaiter is any object that exposes the two methods that
we’ve just seen (OnCompleted and GetResult), and a Boolean
property called IsCompleted. There’s no interface or base
class to unify all of these members (although OnCompleted is
part of the interface INotifyCompletion). We’ll explain the
significance of the pattern in “Asynchronous Functions in C#”
on page 590.

If an antecedent task faults, the exception is re-thrown when the continuation code
calls awaiter.GetResult(). Rather than calling GetResult, we could simply access
the Result property of the antecedent. The benefit of calling GetResult is that if the
antecedent faults, the exception is thrown directly without being wrapped in Aggre
gateException, allowing for simpler and cleaner catch blocks.

For nongeneric tasks, GetResult() has a void return value. Its useful function is
then solely to rethrow exceptions.

If a synchronization context is present, OnCompleted automatically captures it and
posts the continuation to that context. This is very useful in rich-client applications,
as it bounces the continuation back to the UI thread. In writing libraries, however,
it’s not usually desirable because the relatively expensive UI-thread-bounce should
occur just once upon leaving the library, rather than between method calls. Hence
you can defeat it the ConfigureAwait method:

var awaiter = primeNumberTask.ConfigureAwait (false).GetAwaiter();

If no synchronization context is present—or you use ConfigureAwait(false)—the
continuation will (in general) execute on the same thread as the antecedent, avoid‐
ing unnecessary overhead.

The other way to attach a continuation is by calling the task’s ContinueWith
method:

primeNumberTask.ContinueWith (antecedent =>
{
  int result = antecedent.Result;
  Console.WriteLine (result);          // Writes 123
 });

ContinueWith itself returns a Task, which is useful if you want to attach further
continuations. However, you must deal directly with AggregateException if the
task faults, and write extra code to marshal the continuation in UI applications (see
“Task Schedulers” on page 943 in Chapter 23). And in non-UI contexts, you must
specify TaskContinuationOptions.ExecuteSynchronously if you want the contin‐
uation to execute on the same thread; otherwise it will bounce to the thread pool.
ContinueWith is particularly useful in parallel programming scenarios; we cover it
in detail in “Continuations” on page 938 in Chapter 23.
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TaskCompletionSource
We’ve seen how Task.Run creates a task that runs a delegate on a pooled (or non‐
pooled) thread. Another way to create a task is with TaskCompletionSource.

TaskCompletionSource lets you create a task out of any operation that starts and
finishes some time later. It works by giving you a “slave” task that you manually
drive—by indicating when the operation finishes or faults. This is ideal for I/O-
bound work: you get all the benefits of tasks (with their ability to propagate return
values, exceptions, and continuations) without blocking a thread for the duration of
the operation.

To use TaskCompletionSource, you simply instantiate the class. It exposes a Task
property that returns a task upon which you can wait and attach continuations—
just as with any other task. The task, however, is controlled entirely by the TaskCom
pletionSource object via the following methods:

public class TaskCompletionSource<TResult>
{
  public void SetResult (TResult result);
  public void SetException (Exception exception);
  public void SetCanceled();

  public bool TrySetResult (TResult result);
  public bool TrySetException (Exception exception);
  public bool TrySetCanceled();
  public bool TrySetCanceled (CancellationToken cancellationToken);
  ...
}

Calling any of these methods signals the task, putting it into a completed, faulted, or
canceled state (we’ll cover the latter in the section “Cancellation” on page 606). You’re
supposed to call one of these methods exactly once: if called again, SetResult,
SetException, or SetCanceled will throw an exception, whereas the Try* methods
return false.

The following example prints 42 after waiting for five seconds:

var tcs = new TaskCompletionSource<int>();

new Thread (() => { Thread.Sleep (5000); tcs.SetResult (42); })
  { IsBackground = true }
  .Start();

Task<int> task = tcs.Task;         // Our "slave" task.
Console.WriteLine (task.Result);   // 42

With TaskCompletionSource, we can write our own Run method:

Task<TResult> Run<TResult> (Func<TResult> function)
{
  var tcs = new TaskCompletionSource<TResult>();
  new Thread (() =>
  {
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    try { tcs.SetResult (function()); }
    catch (Exception ex) { tcs.SetException (ex); }
  }).Start();
  return tcs.Task;
}
...
Task<int> task = Run (() => { Thread.Sleep (5000); return 42; });

Calling this method is equivalent to calling Task.Factory.StartNew with the Task
CreationOptions.LongRunning option to request a nonpooled thread.

The real power of TaskCompletionSource is in creating tasks that don’t tie up
threads. For instance, consider a task that waits for five seconds and then returns
the number 42. We can write this without a thread by using the Timer class, which
with the help of the CLR (and in turn, the operating system) fires an event in x
milliseconds (we revisit timers in Chapter 22):

Task<int> GetAnswerToLife()
{
  var tcs = new TaskCompletionSource<int>();
  // Create a timer that fires once in 5000 ms:
  var timer = new System.Timers.Timer (5000) { AutoReset = false };
  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (42); };
  timer.Start();
  return tcs.Task;
}

Hence our method returns a task that completes five seconds later, with a result of
42. By attaching a continuation to the task, we can write its result without blocking
any thread:

var awaiter = GetAnswerToLife().GetAwaiter();
awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult()));

We could make this more useful and turn it into a general-purpose Delay method
by parameterizing the delay time and getting rid of the return value. This means
having it return a Task instead of a Task<int>. However, there’s no nongeneric ver‐
sion of TaskCompletionSource, which means we can’t directly create a nongeneric
Task. The workaround is simple: since Task<TResult> derives from Task, we create
a TaskCompletionSource<anything> and then implicitly convert the Task<any
thing> that it gives you into a Task, like this:

var tcs = new TaskCompletionSource<object>();
Task task = tcs.Task;

Now we can write our general-purpose Delay method:

Task Delay (int milliseconds)
{
  var tcs = new TaskCompletionSource<object>();
  var timer = new System.Timers.Timer (milliseconds) { AutoReset = false };
  timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (null); };
  timer.Start();

584 | Chapter 14: Concurrency and Asynchrony



  return tcs.Task;
}

Here’s how we can use it to write “42” after five seconds:

Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Our use of TaskCompletionSource without a thread means that a thread is engaged
only when the continuation starts, five seconds later. We can demonstrate this by
starting 10,000 of these operations at once without error or excessive resource con‐
sumption:

for (int i = 0; i < 10000; i++)
  Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Timers fire their callbacks on pooled threads, so after five sec‐
onds, the thread pool will receive 10,000 requests to call SetRe
sult(null) on a TaskCompletionSource. If the requests
arrive faster than they can be processed, the thread pool will
respond by enqueuing and then processing them at the opti‐
mum level of parallelism for the CPU. This is ideal if the
thread-bound jobs are short-running, which is true in this
case: the thread-bound job is merely the call to SetResult
plus either the action of posting the continuation to the syn‐
chronization context (in a UI application) or otherwise the
continuation itself (Console.WriteLine(42)).

Task.Delay
The Delay method that we just wrote is sufficiently useful that it’s available as a
static method on the Task class:

Task.Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

or:

Task.Delay (5000).ContinueWith (ant => Console.WriteLine (42));

Task.Delay is the asynchronous equivalent of Thread.Sleep.

Principles of Asynchrony
In demonstrating TaskCompletionSource, we ended up writing asynchronous
methods. In this section, we’ll define exactly what asynchronous operations are, and
explain how this leads to asynchronous programming.

Synchronous Versus Asynchronous Operations
A synchronous operation does its work before returning to the caller.

An asynchronous operation does (most or all of) its work after returning to the
caller.
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The majority of methods that you write and call are synchronous. An example is
List<T>.Add, or Console.WriteLine, or Thread.Sleep. Asynchronous methods are
less common, and initiate concurrency, because work continues in parallel to the
caller. Asynchronous methods typically return quickly (or immediately) to the
caller; hence they are also called nonblocking methods.

Most of the asynchronous methods that we’ve seen so far can be described as
general-purpose methods:

• Thread.Start

• Task.Run

• Methods that attach continuations to tasks

In addition, some of the methods that we discussed in “Synchronization Contexts”
on page 574 (Dispatcher.BeginInvoke, Control.BeginInvoke and Synchroniza
tionContext.Post) are asynchronous, as are the methods that we wrote in the sec‐
tion “TaskCompletionSource” on page 583, including Delay.

What Is Asynchronous Programming?
The principle of asynchronous programming is that you write long-running (or
potentially long-running) functions asynchronously. This is in contrast to the con‐
ventional approach of writing long-running functions synchronously, and then call‐
ing those functions from a new thread or task to introduce concurrency as required.

The difference with the asynchronous approach is that concurrency is initiated
inside the long-running function, rather than from outside the function. This has
two benefits:

• I/O-bound concurrency can be implemented without tying up threads (as we
demonstrated in “TaskCompletionSource” on page 583), improving scalability
and efficiency.

• Rich-client applications end up with less code on worker threads, simplifying
thread safety.

This, in turn, leads to two distinct uses for asynchronous programming. The first is
writing (typically server-side) applications that deal efficiently with a lot of concur‐
rent I/O. The challenge here is not thread safety (as there’s usually minimal shared
state) but thread efficiency; in particular, not consuming a thread per network
request. Hence in this context, it’s only I/O-bound operations that benefit from
asynchrony.

The second use is to simplify thread safety in rich-client applications. This is partic‐
ularly relevant as a program grows in size, because to deal with complexity, we typi‐
cally refactor larger methods into smaller ones, resulting in chains of methods that
call one another (call graphs).
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With a traditional synchronous call graph, if any operation within the graph is long-
running, we must run the entire call graph on a worker thread to maintain a
responsive UI. Hence, we end up with a single concurrent operation that spans
many methods (coarse-grained concurrency), and this requires considering thread
safety for every method in the graph.

With an asynchronous call graph, we need not start a thread until it’s actually
needed, typically low in the graph (or not at all in the case of I/O-bound opera‐
tions). All other methods can run entirely on the UI thread, with much-simplified
thread safety. This results in fine-grained concurrency—a sequence of small concur‐
rent operations, in between which execution bounces to the UI thread.

To benefit from this, both I/O- and compute-bound opera‐
tions need to be written asynchronously; a good rule of thumb
is to include anything that might take longer than 50ms.
(On the flipside, excessively fine-grained asynchrony can hurt
performance, because asynchronous operations incur an over‐
head—see “Optimizations” on page 603.)

In this chapter, we’ll focus mostly on the rich-client scenario which is the more
complex of the two. In Chapter 16, we give two examples that illustrate the I/O-
bound scenario (see “Concurrency with TCP” on page 695 and “Writing an HTTP
Server” on page 686).

The UWP (and Silverlight) frameworks encourage asynchro‐
nous programming to the point where synchronous versions
of some long-running methods are either not exposed, or
throw exceptions. Instead, you must call asynchronous meth‐
ods that return tasks (or objects that can be converted into
tasks via the AsTask extension method).

Asynchronous Programming and Continuations
Tasks are ideally suited to asynchronous programming, because they support con‐
tinuations that are essential for asynchrony (consider the Delay method that we
wrote previously in “TaskCompletionSource” on page 583). In writing Delay, we
used TaskCompletionSource, which is a standard way to implement “bottom-level”
I/O-bound asynchronous methods.

For compute-bound methods, we use Task.Run to initiate thread-bound concur‐
rency. Simply by returning the task to the caller, we create an asynchronous
method. What distinguishes asynchronous programming is that we aim to do so
lower in the call graph, so that in rich-client applications, higher-level methods can
remain on the UI thread and access controls and shared state without thread-safety
issues. To illustrate, consider the following method, which computes and counts
prime numbers, using all available cores (we discuss ParallelEnumerable in Chap‐
ter 23):

int GetPrimesCount (int start, int count)
{
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   return
    ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0));
}

The details of how this works are unimportant; what matters is that it can take a
while to run. We can demonstrate this by writing another method to call it:

void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (GetPrimesCount (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}

with the following output:

78498 primes between 0 and 999999
70435 primes between 1000000 and 1999999
67883 primes between 2000000 and 2999999
66330 primes between 3000000 and 3999999
65367 primes between 4000000 and 4999999
64336 primes between 5000000 and 5999999
63799 primes between 6000000 and 6999999
63129 primes between 7000000 and 7999999
62712 primes between 8000000 and 8999999
62090 primes between 9000000 and 9999999

Now we have a call graph, with DisplayPrimeCounts calling GetPrimesCount. The
former uses Console.WriteLine for simplicity, although in reality it would more
likely be updating UI controls in a rich-client application, as we’ll demonstrate later.
We can initiate coarse-grained concurrency for this call graph as follows:

Task.Run (() => DisplayPrimeCounts());

With a fine-grained asynchronous approach, we instead start by writing an asyn‐
chronous version of GetPrimesCount:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
     ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

Why Language Support Is Important
Now we must modify DisplayPrimeCounts so that it calls GetPrimesCountAsync.
This is where C#’s new await and async keywords come into play, because to do so
otherwise is trickier than it sounds. If we simply modify the loop as follows:

for (int i = 0; i < 10; i++)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>
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    Console.WriteLine (awaiter.GetResult() + " primes between... "));
}
Console.WriteLine ("Done");

then the loop will rapidly spin through ten iterations (the methods being nonblock‐
ing) and all ten operations will execute in parallel (followed by a premature
“Done”).

Executing these tasks in parallel is undesirable in this case
because their internal implementations are already parallel‐
ized; it will only make us wait longer to see the first results
(and muck up the ordering).
There is a much more common reason, however, for needing
to serialize the execution of tasks, which is that Task B
depends on the result of Task A. For example, in fetching a
web page, a DNS lookup must precede the HTTP request.

To get them running sequentially, we must trigger the next loop iteration from the
continuation itself. This means eliminating the for loop and resorting to a recursive
call in the continuation:

void DisplayPrimeCounts()
{
  DisplayPrimeCountsFrom (0);
}

void DisplayPrimeCountsFrom (int i)
{
  var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>
  {
    Console.WriteLine (awaiter.GetResult() + " primes between...");
    if (++i < 10) DisplayPrimeCountsFrom (i);
    else Console.WriteLine ("Done");
  });
}

It gets even worse if we want to make DisplayPrimesCount itself asynchronous,
returning a task that it signals upon completion. To accomplish this requires creat‐
ing a TaskCompletionSource:

Task DisplayPrimeCountsAsync()
{
  var machine = new PrimesStateMachine();
  machine.DisplayPrimeCountsFrom (0);
  return machine.Task;
}

class PrimesStateMachine
{
  TaskCompletionSource<object> _tcs = new TaskCompletionSource<object>();
  public Task Task { get { return _tcs.Task; } }

  public void DisplayPrimeCountsFrom (int i)
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  {
    var awaiter = GetPrimesCountAsync (i*1000000+2, 1000000).GetAwaiter();
    awaiter.OnCompleted (() =>
    {
      Console.WriteLine (awaiter.GetResult());
      if (++i < 10) DisplayPrimeCountsFrom (i);
      else { Console.WriteLine ("Done"); _tcs.SetResult (null); }
    });
  }
}

Fortunately, C#’s asynchronous functions do all of this work for us. With the async
and await keywords, we need only write this:

async Task DisplayPrimeCountsAsync()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000 + 2, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
  Console.WriteLine ("Done!");
}

Hence async and await are essential for implementing asynchrony without exces‐
sive complexity. Let’s now see how these keywords work.

Another way of looking at the problem is that imperative
looping constructs (for, foreach and so on), do not mix well
with continuations, because they rely on the current local state
of the method (“how many more times is this loop going to
run?”).

While the async and await keywords offer one solution, it’s
sometimes possible to solve it in another way by replacing the
imperative looping constructs with the functional equivalent
(in other words, LINQ queries). This is the basis of Reactive
Framework (Rx) and can be a good option when you want to
execute query operators over the result—or combine multiple
sequences. The price to pay is that to avoid blocking, Rx oper‐
ates over push-based sequences, which can be conceptually
tricky.

Asynchronous Functions in C#
C# 5.0 introduced the async and await keywords. These keywords let you write
asynchronous code that has the same structure and simplicity as synchronous code,
as well as eliminating the “plumbing” of asynchronous programming.

Awaiting
The await keyword simplifies the attaching of continuations. Starting with a basic
scenario, the compiler expands:
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var result = await expression;
statement(s);

into something functionally similar to:

var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() =>     
{
  var result = awaiter.GetResult();
  statement(s);
});

The compiler also emits code to short-circuit the continuation
in case of synchronous completion (see “Optimizations” on
page 603) and to handle various nuances that we’ll pick up in
later sections.

To demonstrate, let’s revisit the asynchronous method that we wrote previously that
computes and counts prime numbers:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
     ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));
}

With the await keyword, we can call it as follows:

int result = await GetPrimesCountAsync (2, 1000000);
Console.WriteLine (result);

In order to compile, we need to add the async modifier to the containing method:

async void DisplayPrimesCount()
{
  int result = await GetPrimesCountAsync (2, 1000000);
  Console.WriteLine (result);
}

The async modifier tells the compiler to treat await as a keyword rather than an
identifier should an ambiguity arise within that method (this ensures that code
written prior to C# 5 that might use await as an identifier will still compile without
error). The async modifier can be applied only to methods (and lambda expres‐
sions) that return void or (as we’ll see later) a Task or Task<TResult>.

The async modifier is similar to the unsafe modifier in that it
has no effect on a method’s signature or public metadata; it
affects only what happens inside the method. For this reason,
it makes no sense to use async in an interface. However it is
legal, for instance, to introduce async when overriding a non-
async virtual method, as long as you keep the signature the
same.
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Methods with the async modifier are called asynchronous functions, because they
themselves are typically asynchronous. To see why, let’s look at how execution pro‐
ceeds through an asynchronous function.

Upon encountering an await expression, execution (normally) returns to the caller
—rather like with yield return in an iterator. But before returning, the runtime
attaches a continuation to the awaited task, ensuring that when the task completes,
execution jumps back into the method and continues where it left off. If the task
faults, its exception is re-thrown, otherwise its return value is assigned to the await
expression. We can summarize everything we just said by looking at the logical
expansion of the preceding asynchronous method:

void DisplayPrimesCount()
{
  var awaiter = GetPrimesCountAsync (2, 1000000).GetAwaiter();
  awaiter.OnCompleted (() =>   
  {
    int result = awaiter.GetResult();
    Console.WriteLine (result);
  });
}

The expression upon which you await is typically a task; however, any object with a
GetAwaiter method that returns an awaitable object (implementing INotifyComple
tion.OnCompleted and with an appropriately typed GetResult method and a bool
IsCompleted property) will satisfy the compiler.

Notice that our await expression evaluates to an int type; this is because the
expression that we awaited was a Task<int> (whose GetAwaiter().GetResult()
method returns an int).

Awaiting a nongeneric task is legal and generates a void expression:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Capturing local state
The real power of await expressions is that they can appear almost anywhere in
code. Specifically, an await expression can appear in place of any expression
(within an asynchronous function) except for inside a lock expression, unsafe con‐
text, or an executable’s entry point (main method).

In the following example, we await inside a loop:

async void DisplayPrimeCounts()
{
  for (int i = 0; i < 10; i++)
    Console.WriteLine (await GetPrimesCountAsync (i*1000000+2, 1000000));
}

Upon first executing GetPrimesCountAsync, execution returns to the caller by vir‐
tue of the await expression. When the method completes (or faults), execution
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resumes where it left off, with the values of local variables and loop counters pre‐
served.

Without the await keyword, the simplest equivalent might be the example we wrote
in “Why Language Support Is Important” on page 588. The compiler, however,
takes the more general strategy of refactoring such methods into state machines
(rather like it does with iterators).

The compiler relies on continuations (via the awaiter pattern) to resume execution
after an await expression. This means that if running on the UI thread of a rich-
client application, the synchronization context ensures execution resumes on the
same thread. Otherwise, execution resumes on whatever thread the task finished on.
The change-of-thread does not affect the order of execution and is of little conse‐
quence unless you’re somehow relying on thread affinity, perhaps through the use
of thread-local storage (see “Thread-Local Storage” on page 902 in Chapter 22). It’s
rather like touring a city and hailing taxis to get from one destination to another.
With a synchronization context, you’ll always get the same taxi; with no synchroni‐
zation context, you’ll usually get a different taxi each time. In either case, though,
the journey is the same.

Awaiting in a UI
We can demonstrate asynchronous functions in a more practical context by writing
a simple UI that remains responsive while calling a compute-bound method. Let’s
start with a synchronous solution:

class TestUI : Window
{
  Button _button = new Button { Content = "Go" };
  TextBlock _results = new TextBlock();
   
  public TestUI()
  {
    var panel = new StackPanel();
    panel.Children.Add (_button);
    panel.Children.Add (_results);
    Content = panel;
    _button.Click += (sender, args) => Go();
  }
   
  void Go()
  {
    for (int i = 1; i < 5; i++)
      _results.Text += GetPrimesCount (i * 1000000, 1000000) +
        " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
        Environment.NewLine;
  }
   
  int GetPrimesCount (int start, int count)
  {
    return ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0));
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  }
}

Upon pressing the “Go” button, the application becomes unresponsive for the time
it takes to execute the compute-bound code. There are two steps in asynchronizing
this; the first is to switch to the asynchronous version of GetPrimesCount that we
used in previous examples:

Task<int> GetPrimesCountAsync (int start, int count)
{
  return Task.Run (() =>
    ParallelEnumerable.Range (start, count).Count (n =>
      Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

The second step is to modify Go to call GetPrimesCountAsync:

async void Go()
{
  _button.IsEnabled = false;
  for (int i = 1; i < 5; i++)
    _results.Text += await GetPrimesCountAsync (i * 1000000, 1000000) +
      " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
      Environment.NewLine;
  _button.IsEnabled = true;
}

This illustrates the simplicity of programming with asynchronous functions: you
program as you would synchronously, but call asynchronous functions instead of
blocking functions and await them. Only the code within GetPrimesCountAsync
runs on a worker thread; the code in Go “leases” time on the UI thread. We could
say that Go executes pseudoconcurrently to the message loop (in that its execution is
interspersed with other events that the UI thread processes). With this pseudocon‐
currency, the only point at which preemption can occur is during an await. This
simplifies thread-safety: in our case, the only problem that this could cause is reen‐
trancy (clicking the button again while it’s running, which we avoid by disabling the
button). True concurrency occurs lower in the call stack, inside code called by
Task.Run. To benefit from this model, truly concurrent code avoids accessing
shared state or UI controls.

To give another example, suppose that instead of calculating prime numbers, we
want to download several web pages and sum their lengths. Framework 4.5 (and
later) exposes numerous task-returning asynchronous methods, one of which is the
WebClient class in System.Net. The DownloadDataTaskAsync method asynchro‐
nously downloads a URI to a byte array, returning a Task<byte[]>, so by awaiting
it, we get a byte[]. Let’s now rewrite our Go method:

async void Go()
{
  _button.IsEnabled = false;
  string[] urls = "www.albahari.com www.oreilly.com www.linqpad.net".Split();
  int totalLength = 0;
  try

594 | Chapter 14: Concurrency and Asynchrony



  {
    foreach (string url in urls)
    {
      var uri = new Uri ("http://" + url);
      byte[] data = await new WebClient().DownloadDataTaskAsync (uri);
      _results.Text += "Length of " + url + " is " + data.Length +
                       Environment.NewLine;
      totalLength += data.Length;
    }
    _results.Text += "Total length: " + totalLength;
  }
  catch (WebException ex)
  {
    _results.Text += "Error: " + ex.Message;
  }
  finally { _button.IsEnabled = true; }
}

Again, this mirrors how we’d write it synchronously—including the use of catch
and finally blocks. Even though execution returns to the caller after the first
await, the finally block does not execute until the method has logically completed
(by virtue of all its code executing—or an early return or unhandled exception).

It can be helpful to consider exactly what’s happening underneath. First, we need to
revisit the pseudocode that runs the message loop on the UI thread:

Set synchronization context for this thread to WPF sync context
while (!thisApplication.Ended)
{
  wait for something to appear in message queue
  Got something: what kind of message is it?
    Keyboard/mouse message -> fire an event handler
    User BeginInvoke/Invoke message -> execute delegate
}

Event handlers that we attach to UI elements execute via this message loop. When
our Go method runs, execution proceeds as far as the await expression, and then
returns to the message loop (freeing the UI to respond to further events). The com‐
piler’s expansion of await ensures that before returning, however, a continuation is
set up such that execution resumes where it left off upon completion of the task.
And because we awaited on a UI thread, the continuation posts to the synchroniza‐
tion context that executes it via the message loop, keeping our entire Go method
executing pseudoconcurrently on the UI thread. True (I/O-bound) concurrency
occurs within the implementation of DownloadDataTaskAsync.

Comparison to coarse-grained concurrency
Asynchronous programming was difficult prior to C# 5, not only because there was
no language support, but because the .NET Framework exposed asynchronous
functionality through clumsy patterns called the EAP and the APM (see “Obsolete
Patterns” on page 614), rather than task-returning methods.
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The popular workaround was coarse-grained concurrency (in fact, there was even a
type called BackgroundWorker to help with that). Returning to our original synchro‐
nous example with GetPrimesCount, we can demonstrate coarse-grained asyn‐
chrony by modifying the button’s event handler as follows:

  ...
  _button.Click += (sender, args) =>
  {
    _button.IsEnabled = false;
    Task.Run (() => Go());
  };

(We’ve chosen to use Task.Run rather than BackgroundWorker because the latter
would do nothing to simplify our particular example.) In either case, the end result
is that our entire synchronous call graph (Go plus GetPrimesCount) runs on a
worker thread. And because Go updates UI elements, we must now litter our code
with Dispatcher.BeginInvoke:

void Go()
{
  for (int i = 1; i < 5; i++)
  {
    int result = GetPrimesCount (i * 1000000, 1000000);
    Dispatcher.BeginInvoke (new Action (() =>
      _results.Text += result + " primes between " + (i*1000000) +
      " and " + ((i+1)*1000000-1) + Environment.NewLine));
  }
  Dispatcher.BeginInvoke (new Action (() => _button.IsEnabled = true));
}

Unlike with the asynchronous version, the loop itself runs on a worker thread. This
might seem innocuous, and yet, even in this simple case, our use of multithreading
has introduced a race condition. (Can you spot it? If not, try running the program:
it will almost certainly become apparent.)

Implementing cancellation and progress reporting creates more possibilities for
thread-safety errors, as does any additional code in the method. For instance, sup‐
pose the upper limit for the loop is not hardcoded, but comes from a method call:

  for (int i = 1; i < GetUpperBound(); i++)

Now suppose GetUpperBound() reads the value from a lazily loaded configuration
file, which loads from disk upon first call. All of this code now runs on your worker
thread, code that’s most likely not thread-safe. This is the danger of starting worker
threads high in the call graph.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void return type with a Task
to make the method itself usefully asynchronous (and awaitable). No further
changes are required:
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async Task PrintAnswerToLife()   // We can return Task instead of void
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  Console.WriteLine (answer); 
}

Notice that we don’t explicitly return a task in the method body. The compiler man‐
ufactures the task, which it signals upon completion of the method (or upon an
unhandled exception). This makes it easy to create asynchronous call chains:

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

And because we’ve declared Go with a Task return type, Go itself is awaitable.

The compiler expands asynchronous functions that return tasks into code that lev‐
erages TaskCompletionSource to create a task that it then signals or faults.

The compiler actually calls TaskCompletionSource indirectly,
via types named Async*MethodBuilder in the System.Compi
lerServices namespace. These types handle edge cases such
as putting the task into a canceled state upon an Operation
CanceledException, and implementing the nuances we
describe in “Asynchrony and Synchronization Contexts” on
page 602.

Nuances aside, we can expand PrintAnswerToLife into the following functional
equivalent:

Task PrintAnswerToLife()
{
  var tcs = new TaskCompletionSource<object>();
  var awaiter = Task.Delay (5000).GetAwaiter();
  awaiter.OnCompleted (() =>
  {
    try
    {
      awaiter.GetResult();    // Re-throw any exceptions
      int answer = 21 * 2;
      Console.WriteLine (answer);
      tcs.SetResult (null);
    }
    catch (Exception ex) { tcs.SetException (ex); }
  });
  return tcs.Task;
}

Hence, whenever a task-returning asynchronous method finishes, execution jumps
back to whoever awaited it (by virtue of a continuation).
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In a rich-client scenario, execution bounces at this point back
to the UI thread (if it’s not already on the UI thread). Other‐
wise, it continues on whatever thread the continuation came
back on. This means that there’s no latency cost in bubbling
up asynchronous call graphs, other than the first “bounce” if it
was UI-thread-initiated.

Returning Task<TResult>
You can return a Task<TResult> if the method body returns TResult:

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;    // Method has return type Task<int> we return int
}

Internally, this results in the TaskCompletionSource being signaled with a value
rather than null. We can demonstrate GetAnswerToLife by calling it from PrintAns
werToLife (which is, in turn, called from Go):

async Task Go()
{
  await PrintAnswerToLife();
  Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  int answer = await GetAnswerToLife();
  Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  await Task.Delay (5000);
  int answer = 21 * 2;
  return answer;
}

In effect, we’ve refactored our original PrintAnswerToLife into two methods—with
the same ease as if we were programming synchronously. The similarity to synchro‐
nous programming is intentional; here’s the synchronous equivalent of our call
graph, for which calling Go() gives the same result after blocking for five seconds:

void Go()
{
  PrintAnswerToLife();
  Console.WriteLine ("Done");
 }

void PrintAnswerToLife()
{
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  int answer = GetAnswerToLife();
  Console.WriteLine (answer);
}

int GetAnswerToLife()
{
  Thread.Sleep (5000);
  int answer = 21 * 2;
  return answer;
}

This also illustrates the basic principle of how to design with
asynchronous functions in C#:

1. Write your methods synchronously.
2. Replace synchronous method calls with asynchronous

method calls, and await them.
3. Except for “top-level” methods (typically event handlers

for UI controls), upgrade your asynchronous methods’
return types to Task or Task<TResult> so that they’re
awaitable.

The compiler’s ability to manufacture tasks for asynchronous functions means that
for the most part, you need to explicitly instantiate a TaskCompletionSource only in
bottom-level methods that initiate I/O-bound concurrency. (And for methods that
initiate compute-bound currency, you create the task with Task.Run.)

Asynchronous call graph execution
To see exactly how this executes, it’s helpful to rearrange our code as follows:

async Task Go()
{
  var task = PrintAnswerToLife();
  await task; Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
  var task = GetAnswerToLife();
  int answer = await task; Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
  var task = Task.Delay (5000);
  await task; int answer = 21 * 2; return answer;
}

Go calls PrintAnswerToLife, which calls GetAnswerToLife, which calls Delay and
then awaits. The await causes execution to return to PrintAnswerToLife which
itself awaits, returning to Go, which also awaits and returns to the caller. All of this
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happens synchronously, on the thread that called Go; this is the brief synchronous
phase of execution.

Five seconds later, the continuation on Delay fires and execution returns to GetAns
werToLife on a pooled thread. (If we started on a UI thread, execution now boun‐
ces to that thread). The remaining statements in GetAnswerToLife then run, after
which the method’s Task<int> completes with a result of 42 and executes the con‐
tinuation in PrintAnswerToLife, which executes the remaining statements in that
method. The process continues until Go’s task is signaled as complete.

Execution flow matches the synchronous call graph that we showed earlier because
we’re following a pattern whereby we await every asynchronous method right after
calling it. This creates a sequential flow with no parallelism or overlapping execu‐
tion within the call graph. Each await expression creates a “gap” in execution, after
which the program resumes where it left off.

Parallelism
Calling an asynchronous method without awaiting it allows the code that follows to
execute in parallel. You might have noticed in earlier examples that we had a button
whose event handler called Go as follows:

_button.Click += (sender, args) => Go();

Despite Go being an asynchronous method, we didn’t await it, and this is indeed
what facilitates the concurrency needed to maintain a responsive UI.

We can use this same principle to run two asynchronous operations in parallel:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

(By awaiting both operations afterward, we “end” the parallelism at that point.
Later, we’ll describe how the WhenAll task combinator helps with this pattern.)

Concurrency created in this manner occurs whether or not the operations are initi‐
ated on a UI thread, although there’s a difference in how it occurs. In both cases, we
get the same “true” concurrency occurring in the bottom-level operations that ini‐
tiate it (such as Task.Delay, or code farmed to Task.Run). Methods above this in
the call stack will be subject to true concurrency only if the operation was initiated
without a synchronization context present; otherwise they will be subject to the
pseudoconcurrency (and simplified thread safety) that we talked about earlier,
whereby the only places at which we can be preempted is at an await statement.
This lets us, for instance, define a shared field, _x, and increment it in GetAnswerTo
Life without locking:

async Task<int> GetAnswerToLife()
{
  _x++;
  await Task.Delay (5000);
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  return 21 * 2;
}

(We would, though, be unable to assume that _x had the same value before and
after the await.)

Asynchronous Lambda Expressions
Just as ordinary named methods can be asynchronous:

async Task NamedMethod()
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
}

so can unnamed methods (lambda expressions and anonymous methods), if pre‐
ceded by the async keyword:

Func<Task> unnamed = async () =>
{
  await Task.Delay (1000);
  Console.WriteLine ("Foo");
};

We can call and await these in the same way:

await NamedMethod();
await unnamed();

Asynchronous lambda expressions can be used when attaching event handlers:

myButton.Click += async (sender, args) =>
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

This is more succinct than the following, which has the same effect:

myButton.Click += ButtonHandler;
...
async void ButtonHander (object sender, EventArgs args)
{
  await Task.Delay (1000);
  myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task<TResult>:

Func<Task<int>> unnamed = async () =>
{
  await Task.Delay (1000);
  return 123;
};
int answer = await unnamed();
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Asynchronous Methods in WinRT
In WinRT, the equivalent of Task is IAsyncAction and the equivalent of Task<TRe
sult> is IAsyncOperation<TResult> (defined in the Windows.Foundation name‐
space).

You can convert from either into a Task or Task<TResult> via the AsTask extension
method in the System.Runtime.WindowsRuntime.dll assembly. This assembly also
defines a GetAwaiter method that operates on IAsyncAction and IAsyncOpera
tion<TResult> types which allows you to await them directly. For instance:

Task<StorageFile> fileTask = KnownFolders.DocumentsLibrary.CreateFileAsync
                             ("test.txt").AsTask();

or:

StorageFile file = await KnownFolders.DocumentsLibrary.CreateFileAsync
                         ("test.txt");

Due to limitations in the COM type system, IAsyncOpera
tion<TResult> is not based on IAsyncAction as you might
expect. Instead, both inherit from a common base type called
IAsyncInfo.

The AsTask method is also overloaded to accept a cancellation token (see “Cancella‐
tion” on page 606) and an IProgress<T> object (see “Progress Reporting” on page 608).

Asynchrony and Synchronization Contexts
We’ve already seen how the presence of a synchronization context is significant in
terms of posting continuations. There are a couple of other more subtle ways in
which synchronization contexts come into play with void-returning asynchronous
functions. These are not a direct result of C# compiler expansions, but a function of
the Async*MethodBuilder types in the System.CompilerServices namespace that
the compiler uses in expanding asynchronous functions.

Exception posting
It’s common practice in rich-client applications to rely on the central exception-
handling event (Application.DispatcherUnhandledException in WPF) to process
unhandled exceptions thrown on the UI thread. And in ASP.NET applications, the
Application_Error in global.asax does a similar job. Internally, they work by
invoking UI events (or in ASP.NET, the pipeline of page processing methods) in
their own try/catch block.

Top-level asynchronous functions complicate this. Consider the following event
handler for a button click:

async void ButtonClick (object sender, RoutedEventArgs args)
{
  await Task.Delay(1000);
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  throw new Exception ("Will this be ignored?");
}

When the button is clicked and the event handler runs, execution returns normally
to the message loop after the await statement, and the exception that’s thrown a
second later cannot be caught by the catch block in the message loop.

To mitigate this problem, AsyncVoidMethodBuilder catches unhandled exceptions
(in void-returning asynchronous functions), and posts them to the synchronization
context if present, ensuring that global exception-handling events still fire.

The compiler applies this logic only to void-returning asyn‐
chronous functions. So if we changed ButtonClick to return a
Task instead of void, the unhandled exception would fault the
resultant Task, which would then have nowhere to go (result‐
ing in an unobserved exception).

An interesting nuance is that it makes no difference whether you throw before or
after an await. So in the following example, the exception is posted to the synchro‐
nization context (if present) and never to the caller:

async void Foo() { throw null; await Task.Delay(1000); }

If no synchronization context is present, the exception will go unobserved. It might
seem odd that the exception isn’t thrown right back to the caller, although it’s not
entirely different to what happens with iterators:

IEnumerable<int> Foo() { throw null; yield return 123; }

In this example, an exception is never thrown straight back to the caller: not until
the sequence is enumerated is the exception thrown.

OperationStarted and OperationCompleted
If a synchronization context is present, void-returning asynchronous functions also
call its OperationStarted method upon entering the function, and its Operation
Completed method when the function finishes. These methods are leveraged by
ASP.NET’s synchronization context to ensure sequential execution in the page-
processing pipeline.

Overriding these methods is useful if writing a custom synchronization context for
unit testing void-returning asynchronous methods. This is discussed on Microsoft’s
Parallel Programming blog at http://blogs.msdn.com/b/pfxteam.

Optimizations

Completing synchronously
An asynchronous function may return before awaiting. Consider the following
method that caches the downloading of web pages:

C
o

ncurrency
&

A
synchro

ny

Asynchronous Functions in C# | 603

http://blogs.msdn.com/b/pfxteam


static Dictionary<string,string> _cache = new Dictionary<string,string>();

async Task<string> GetWebPageAsync (string uri)
{
  string html;
  if (_cache.TryGetValue (uri, out html)) return html;
  return _cache [uri] =
    await new WebClient().DownloadStringTaskAsync (uri);
}

Should a URI already exist in the cache, execution returns to the caller with no
awaiting having occurred, and the method returns an already-signaled task. This is
referred to as synchronous completion.

When you await a synchronously completed task, execution does not return to the
caller and bounce back via a continuation—instead, it proceeds immediately to the
next statement. The compiler implements this optimization by checking the IsCom
pleted property on the awaiter; in other words, whenever you await:

Console.WriteLine (await GetWebPageAsync ("http://oreilly.com"));

the compiler emits code to short-circuit the continuation in case of synchronization
completion:

var awaiter = GetWebPageAsync().GetAwaiter();
if (awaiter.IsCompleted)
  Console.WriteLine (awaiter.GetResult());
else
  awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult());

Awaiting an asynchronous function that returns synchro‐
nously still incurs a small overhead—maybe 50–100 nanosec‐
onds on a 2015-era PC.
In contrast, bouncing to the thread pool introduces the cost of
a context switch—perhaps one or two microseconds, and
bouncing to a UI message loop, at least ten times that (much
longer if the UI thread is busy).

It’s even legal to write asynchronous methods that never await, although the com‐
piler will generate a warning:

async Task<string> Foo() { return "abc"; }

Such methods can be useful when overriding virtual/abstract methods, if your
implementation doesn’t happen to need asynchrony. (An example is Memory
Stream’s ReadAsync/WriteAsync methods—see Chapter 15.) Another way to ach‐
ieve the same result is to use Task.FromResult, which returns an already-signaled
task:

Task<string> Foo() { return Task.FromResult ("abc"); }

Our GetWebPageAsync method is implicitly thread-safe if called from a UI thread, in
that you could invoke it several times in succession (thereby initiating multiple con‐
current downloads), and no locking is required to protect the cache. If the series of
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calls were to the same URI, though, we’d end up initiating multiple redundant
downloads, all of which would eventually update the same cache entry (the last one
winning). While not erroneous, it would be more efficient if subsequent calls to the
same URI could instead (asynchronously) wait upon the result of the in-progress
request.

There’s an easy way to accomplish this—without resorting to locks or signaling
constructs. Instead of a cache of strings, we create a cache of “futures”
(Task<string>):

static Dictionary<string,Task<string>> _cache =
   new Dictionary<string,Task<string>>();

Task<string> GetWebPageAsync (string uri)
{
  Task<string> downloadTask;
  if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
  return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

(Notice that we don’t mark the method as async, because we’re directly returning
the task we obtain from calling WebClient’s method.)

If we call GetWebPageAsync repeatedly with the same URI, we’re now guaranteed to
get the same Task<string> object back. (This has the additional benefit of minimiz‐
ing GC load.) And if the task is complete, awaiting it is cheap, thanks to the com‐
piler optimization that we just discussed.

We could further extend our example to make it thread-safe without the protection
of a synchronization context, by locking around the entire method body:

lock (_cache)
{
  Task<string> downloadTask;
  if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
  return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

This works because we’re not locking for the duration of downloading a page
(which would hurt concurrency); we’re locking for the small duration of checking
the cache, starting a new task if necessary, and updating the cache with that task.

Avoiding excessive bouncing
For methods that are called many times in a loop, you can avoid the cost of repeat‐
edly bouncing to a UI message loop by calling ConfigureAwait. This forces a task
not to bounce continuations to the synchronization context, cutting the overhead
closer to the cost of a context switch (or much less if the method that you’re await‐
ing completes synchronously):

async void A() { ... await B(); ... }

async Task B()
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{
  for (int i = 0; i < 1000; i++)
    await C().ConfigureAwait (false);
}

async Task C() { ... }

This means that for the B and C methods, we rescind the simple thread-safety model
in UI apps whereby code runs on the UI thread and can be preempted only during
an await statement. Method A, however, is unaffected and will remain on a UI
thread if it started on one.

This optimization is particularly relevant when writing libraries: you don’t need the
benefit of simplified thread safety because your code typically does not share state
with the caller—and does not access UI controls. (It would also make sense, in our
example, for method C to complete synchronously if it knew the operation was
likely to be short-running.)

Asynchronous Patterns
Cancellation
It’s often important to be able to cancel a concurrent operation after it’s started,
perhaps in response to a user request. A simple way to implement this is with a can‐
cellation flag, which we could encapsulate by writing a class like this:

class CancellationToken
{
  public bool IsCancellationRequested { get; private set; }
  public void Cancel() { IsCancellationRequested = true; }
  public void ThrowIfCancellationRequested()
  {
    if (IsCancellationRequested)
      throw new OperationCanceledException();
  }
}

We could then write a cancellable asynchronous method as follows:

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000);
    cancellationToken.ThrowIfCancellationRequested();
  }
}

When the caller wants to cancel, it calls Cancel on the cancellation token that it
passed into Foo. This sets IsCancellationRequested to true, which causes Foo to
fault a short time later with an OperationCanceledException (a predefined excep‐
tion in the System namespace designed for this purpose).
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Thread safety aside (we should be locking around reading/writing IsCancellation
Requested), this pattern is effective and the CLR provides a type called Cancella
tionToken which is very similar to what we’ve just shown. However, it lacks a
Cancel method; this method is instead exposed on another type called Cancella
tionTokenSource. This separation provides some security: a method that has access
only to a CancellationToken object can check for but not initiate cancellation.

To get a cancellation token, we first instantiate a CancellationTokenSource:

var cancelSource = new CancellationTokenSource();

This exposes a Token property which returns a CancellationToken. Hence, we
could call our Foo method as follows:

var cancelSource = new CancellationTokenSource();
Task foo = Foo (cancelSource.Token);
...
... (some time later)
cancelSource.Cancel();

Most asynchronous methods in the CLR support cancellation tokens, including
Delay. If we modify Foo such that it passes its token into the Delay method, the task
will end immediately upon request (rather than up to a second later):

async Task Foo (CancellationToken cancellationToken)
{
  for (int i = 0; i < 10; i++)
  {
    Console.WriteLine (i);
    await Task.Delay (1000, cancellationToken);
  }
 }

Notice that we no longer need to call ThrowIfCancellationRequested because
Task.Delay is doing that for us. Cancellation tokens propagate nicely down the call
stack (just as cancellation requests cascade up the call stack, by virtue of being
exceptions).

Asynchronous methods in WinRT follow an inferior protocol
for cancellation whereby instead of accepting a Cancella
tionToken, the IAsyncInfo type exposes a Cancel method.
The AsTask extension method is overloaded to accept a can‐
cellation token, however, bridging the gap.

Synchronous methods can support cancellation, too (such as Task’s Wait method).
In such cases, the instruction to cancel will have to come asynchronously (e.g., from
another task). For example:

var cancelSource = new CancellationTokenSource();
Task.Delay (5000).ContinueWith (ant => cancelSource.Cancel());
...

In fact, from Framework 4.5, you can specify a time interval when constructing Can
cellationTokenSource to initiate cancellation after a set period of time (just as we
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demonstrated). It’s useful for implementing timeouts, whether synchronous or
asynchronous:

var cancelSource = new CancellationTokenSource (5000);
try { await Foo (cancelSource.Token); }
catch (OperationCanceledException ex) { Console.WriteLine ("Cancelled"); }

The CancellationToken struct provides a Register method which lets you register
a callback delegate that will be fired upon cancellation; it returns an object that can
be disposed to undo the registration.

Tasks generated by the compiler’s asynchronous functions automatically enter a
“Canceled” state upon an unhandled OperationCanceledException (IsCanceled
returns true and IsFaulted returns false). The same goes for tasks created with
Task.Run for which you pass the (same) CancellationToken to the constructor.
The distinction between a faulted and a canceled task is unimportant in asynchro‐
nous scenarios, in that both throw an OperationCanceledException when awaited;
it matters in advanced parallel programming scenarios (specifically conditional
continuations). We pick up this topic in “Canceling Tasks” on page 937 in Chapter 23.

Progress Reporting
Sometimes you’ll want an asynchronous operation to report back progress as it’s
running. A simple solution is to pass an Action delegate to the asynchronous
method, which the method fires whenever progress changes:

Task Foo (Action<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged (i / 10);
      // Do something compute-bound...
    }
  });
}

Here’s how we could call it:

Action<int> progress = i => Console.WriteLine (i + " %");
await Foo (progress);

While this works well in a Console application, it’s not ideal in rich-client scenarios
because it reports progress from a worker thread, causing potential thread-safety
issues for the consumer. (In effect, we’ve allowed a side effect of concurrency to
“leak” to the outside world, which is unfortunate as the method is otherwise isolated
if called from a UI thread.)

IProgress<T> and Progress<T>
The CLR provides a pair of types to solve this problem: an interface called IPro
gress<T> and a class that implements this interface called Progress<T>. Their pur‐
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pose, in effect, is to “wrap” a delegate, so that UI applications can report progress
safely through the synchronization context.

The interface defines just one method:

public interface IProgress<in T>
{
  void Report (T value);
}

Using IProgress<T> is easy; our method hardly changes:

Task Foo (IProgress<int> onProgressPercentChanged)
{
  return Task.Run (() =>
  {
    for (int i = 0; i < 1000; i++)
    {
      if (i % 10 == 0) onProgressPercentChanged.Report (i / 10);
      // Do something compute-bound...
    }
  });
}

The Progress<T> class has a constructor that accepts a delegate of type Action<T>
that it wraps:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
await Foo (progress);

(Progress<T> also has a ProgressChanged event that you can subscribe to instead
of [or in addition to] passing an action delegate to the constructor.) Upon instanti‐
ating Progress<int>, the class captures the synchronization context, if present.
When Foo then calls Report, the delegate is invoked through that context.

Asynchronous methods can implement more elaborate progress reporting by
replacing int with a custom type that exposes a range of properties.

If you’re familiar with Reactive Framework, you’ll notice that
IProgress<T> together with the task returned by the asyn‐
chronous function provide a feature set similar to IOb
server<T>. The difference is that a task can expose a “final”
return value in addition to (and differently typed to) the val‐
ues emitted by IProgress<T>.

Values emitted by IProgress<T> are typically “throwaway”
values (e.g., percent complete or bytes downloaded so far)
whereas values pushed by IObserver<T>’s OnNext typically
comprise the result itself and are the very reason for calling it.

Asynchronous methods in WinRT also offer progress reporting, although the pro‐
tocol is complicated by COM’s (relatively) retarded type system. Instead of accept‐
ing an IProgress<T> object, asynchronous WinRT methods that report progress

C
o

ncurrency
&

A
synchro

ny

Asynchronous Patterns | 609



return one of the following interfaces, in place of IAsyncAction and IAsyncOpera
tion<TResult>:

IAsyncActionWithProgress<TProgress>
IAsyncOperationWithProgress<TResult, TProgress>

Interestingly, both are based on IAsyncInfo (and not IAsyncAction and IAsyncOp
eration<TResult>).

The good news is that the AsTask extension method is also overloaded to accept
IProgress<T> for the preceding interfaces, so as a .NET consumer, you can ignore
the COM interfaces and do this:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
CancellationToken cancelToken = ...
var task = someWinRTobject.FooAsync().AsTask (cancelToken, progress);

The Task-based Asynchronous Pattern (TAP)
Framework 4.5 and later exposes hundreds of task-returning asynchronous meth‐
ods that you can await (mainly related to I/O). Most of these methods (at least
partly) follow a pattern called the Task-based Asynchronous Pattern (TAP), which is
a sensible formalization of what we have described to date. A TAP method:

• Returns a “hot” (running) Task or Task<TResult>
• Has an “Async” suffix (except for special cases such as task combinators)

• Is overloaded to accept a cancellation token and/or IProgress<T> if it supports
cancellation and/or progress reporting

• Returns quickly to the caller (has only a small initial synchronous phase)
• Does not tie up a thread if I/O-bound

As we’ve seen, TAP methods are easy to write with C#’s asynchronous functions.

Task Combinators
A nice consequence of there being a consistent protocol for asynchronous functions
(whereby they consistently return tasks) is that it’s possible to use and write task
combinators—functions that usefully combine tasks, without regard for what those
specific tasks do.

The CLR includes two task combinators: Task.WhenAny and Task.WhenAll. In
describing them, we’ll assume the following methods are defined:

async Task<int> Delay1() { await Task.Delay (1000); return 1; }
async Task<int> Delay2() { await Task.Delay (2000); return 2; }
async Task<int> Delay3() { await Task.Delay (3000); return 3; }
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WhenAny
Task.WhenAny returns a task that completes when any one of a set of tasks complete.
The following completes in one second:

Task<int> winningTask = await Task.WhenAny (Delay1(), Delay2(), Delay3());
Console.WriteLine ("Done");
Console.WriteLine (winningTask.Result);   // 1

Because Task.WhenAny itself returns a task, we await it, which returns the task that
finished first. Our example is entirely nonblocking—including the last line when we
access the Result property (because winningTask will already have finished). None‐
theless, it’s usually better to await the winningTask:

Console.WriteLine (await winningTask);   // 1

because any exceptions are then re-thrown without an AggregateException wrap‐
ping. In fact, we can perform both awaits in one step:

int answer = await await Task.WhenAny (Delay1(), Delay2(), Delay3());

If a nonwinning task subsequently faults, the exception will go unobserved unless
you subsequently await the task (or query its Exception property).

WhenAny is useful for applying timeouts or cancellation to operations that don’t
otherwise support it:

Task<string> task = SomeAsyncFunc();
Task winner = await (Task.WhenAny (task, Task.Delay(5000)));
if (winner != task) throw new TimeoutException();
string result = await task;   // Unwrap result/re-throw

Notice that because in this case we’re calling WhenAny with differently typed tasks,
the winner is reported as a plain Task (rather than a Task<string>).

WhenAll
Task.WhenAll returns a task that completes when all of the tasks that you pass to it
complete. The following completes after three seconds (and demonstrates the fork/
join pattern):

await Task.WhenAll (Delay1(), Delay2(), Delay3());

We could get a similar result by awaiting task1, task2 and task3 in turn rather
than using WhenAll:

Task task1 = Delay1(), task2 = Delay2(), task3 = Delay3();
await task1; await task2; await task3;

The difference (apart from it being less efficient by virtue of requiring three awaits
rather than one), is that should task1 fault, we’ll never get to await task2/task3,
and any of their exceptions will go unobserved. In fact, this is why they relaxed the
unobserved task exception behavior from CLR 4.5: it would be confusing if, despite
an exception handling block around the entire preceding code block, an exception
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from task2 or task3 could crash your application sometime later when garbage
collected.

In contrast, Task.WhenAll doesn’t complete until all tasks have completed—even
when there’s a fault. And if there are multiple faults, their exceptions are combined
into the task’s AggregateException (this is when AggregateException actually
becomes useful—should you be interested in all the exceptions, that is). Awaiting
the combined task, however, throws only the first exception, so to see all the excep‐
tions you need to do this:

Task task1 = Task.Run (() => { throw null; } );
Task task2 = Task.Run (() => { throw null; } );
Task all = Task.WhenAll (task1, task2);
try { await all; }
catch
{
  Console.WriteLine (all.Exception.InnerExceptions.Count);   // 2
}

Calling WhenAll with tasks of type Task<TResult> returns a Task<TResult[]>, giv‐
ing the combined results of all the tasks. This reduces to a TResult[] when awaited:

Task<int> task1 = Task.Run (() => 1);
Task<int> task2 = Task.Run (() => 2);
int[] results = await Task.WhenAll (task1, task2);   // { 1, 2 }

To give a practical example, the following downloads URIs in parallel and sums
their total length:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<byte[]>> downloadTasks = uris.Select (uri =>
    new WebClient().DownloadDataTaskAsync (uri));
       
  byte[][] contents = await Task.WhenAll (downloadTasks);
  return contents.Sum (c => c.Length);
}

There’s a slight inefficiency here, though, in that we’re unnecessarily hanging onto
the byte arrays that we download until every task is complete. It would be more effi‐
cient if we collapsed byte arrays into their lengths right after downloading them.
This is where an asynchronous lambda comes in handy, because we need to feed an
await expression into LINQ’s Select query operator:

async Task<int> GetTotalSize (string[] uris)
{
  IEnumerable<Task<int>> downloadTasks = uris.Select (async uri =>
    (await new WebClient().DownloadDataTaskAsync (uri)).Length);

  int[] contentLengths = await Task.WhenAll (downloadTasks);
  return contentLengths.Sum();
}
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Custom combinators
It can be useful to write your own task combinators. The simplest “combinator”
accepts a single task, such as the following, which lets you await any task with a
timeout:

async static Task<TResult> WithTimeout<TResult> (this Task<TResult> task,
                                                 TimeSpan timeout)
{
  Task winner = await (Task.WhenAny (task, Task.Delay (timeout)));
  if (winner != task) throw new TimeoutException();
  return await task;   // Unwrap result/re-throw
}

The following lets you “abandon” a task via a CancellationToken:

static Task<TResult> WithCancellation<TResult> (this Task<TResult> task,
                                          CancellationToken cancelToken)
{
  var tcs = new TaskCompletionSource<TResult>();
  var reg = cancelToken.Register (() => tcs.TrySetCanceled ());
  task.ContinueWith (ant =>
  {
    reg.Dispose();       
    if (ant.IsCanceled)
      tcs.TrySetCanceled();
    else if (ant.IsFaulted)
      tcs.TrySetException (ant.Exception.InnerException);
    else
      tcs.TrySetResult (ant.Result);
  });
  return tcs.Task;  
}

Task combinators can be complex to write, sometimes requiring the use of signaling
constructs that we cover in Chapter 22. This is actually a good thing, because it
keeps concurrency-related complexity out of your business logic and into reusable
methods that can be tested in isolation.

The next combinator works like WhenAll, except that if any of the tasks fault, the
resultant task faults immediately:

async Task<TResult[]> WhenAllOrError<TResult>
  (params Task<TResult>[] tasks)
{
  var killJoy = new TaskCompletionSource<TResult[]>();
  foreach (var task in tasks)
    task.ContinueWith (ant =>
    {
      if (ant.IsCanceled)
        killJoy.TrySetCanceled();
      else if (ant.IsFaulted)
        killJoy.TrySetException (ant.Exception.InnerException);
    });
  return await await Task.WhenAny (killJoy.Task, Task.WhenAll (tasks));            
}
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We start by creating a TaskCompletionSource whose sole job is to end the party if a
task faults. Hence, we never call its SetResult method; only its TrySetCanceled
and TrySetException methods. In this case, ContinueWith is more convenient than
GetAwaiter().OnCompleted because we’re not accessing the tasks’ results and
wouldn’t want to bounce to a UI thread at that point.

Obsolete Patterns
The Framework employs other patterns for asynchrony that precede tasks and
asynchronous functions. These are now rarely required, since task-based asyn‐
chrony has become the dominant pattern as of Framework 4.5.

Asynchronous Programming Model (APM)
The oldest pattern is called the Asynchronous Programming Model (APM) and uses
a pair of methods starting in “Begin” and “End,” and an interface called IAsyncRe
sult. To illustrate, we’ll take the Stream class in System.IO, and look at its Read
method. First, the synchronous version:

public int Read (byte[] buffer, int offset, int size);

You can probably predict what the task-based asynchronous version looks like:

public Task<int> ReadAsync (byte[] buffer, int offset, int size);

Now let’s examine the APM version:

public IAsyncResult BeginRead (byte[] buffer, int offset, int size,
                               AsyncCallback callback, object state);
public int EndRead (IAsyncResult asyncResult);

Calling the Begin* method initiates the operation, returning an IAsyncResult
object that acts as a token for the asynchronous operation. When the operation
completes (or faults), the AsyncCallback delegate fires:

public delegate void AsyncCallback (IAsyncResult ar);

Whoever handles this delegate then calls the End* method, which provides the oper‐
ation’s return value, as well as re-throwing an exception if the operation faulted.

The APM is not only awkward to use, but surprisingly difficult to implement cor‐
rectly. The easiest way to deal with APM methods is to call the Task.Factory.Fro
mAsync adapter method, which converts an APM method pair into a Task.
Internally, it uses a TaskCompletionSource to give you a task that’s signaled when
an APM operation completes or faults.

The FromAsync method requires the following parameters:

• A delegate specifying a BeginXXX method

• A delegate specifying a EndXXX method
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• Additional arguments that will get passed to these methods

FromAsync is overloaded to accept delegate types and arguments that match nearly
all the asynchronous method signatures found in the .NET Framework. For
instance, assuming stream is a Stream and buffer is a byte[], we could do this:

Task<int> readChunk = Task<int>.Factory.FromAsync (
  stream.BeginRead, stream.EndRead, buffer, 0, 1000, null);

Asynchronous delegates
The CLR still supports asynchronous delegates, a feature whereby you can call any
delegate asynchronously using APM-style BeginInvoke/EndInvoke methods:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
foo.BeginInvoke (asyncResult =>
  Console.WriteLine (foo.EndInvoke (asyncResult)), null);

Asynchronous delegates incur a surprising overhead—and are painfully redundant
with tasks:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
Task.Run (foo).ContinueWith (ant => Console.WriteLine (ant.Result));

Event-Based Asynchronous Pattern (EAP)
The Event-based Asynchronous Pattern (EAP) was introduced in Framework 2.0 to
provide a simpler alternative to the APM, particularly in UI scenarios. It was imple‐
mented in only a handful of types, however, most notably WebClient in Sys
tem.Net. The EAP is just a pattern; no types are provided to assist. Essentially the
pattern is this: a class offers a family of members that internally manage concur‐
rency, similar to the following.

// These members are from the WebClient class:

public byte[] DownloadData (Uri address);    // Synchronous version
public void DownloadDataAsync (Uri address);
public void DownloadDataAsync (Uri address, object userToken);
public event DownloadDataCompletedEventHandler DownloadDataCompleted;

public void CancelAsync (object userState);  // Cancels an operation
public bool IsBusy { get; }                  // Indicates if still running

The *Async methods initiate an operation asynchronously. When the operation
completes, the *Completed event fires (automatically posting to the captured syn‐
chronization context if present). This event passes back an event arguments object
that contains:

• A flag indicating whether the operation was canceled (by the consumer calling
CancelAsync)

• An Error object indicating an exception that was thrown (if any)
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• The userToken object if supplied when calling the Async method

EAP types may also expose a progress reporting event, which fires whenever pro‐
gress changes (also posted through the synchronization context):

public event DownloadProgressChangedEventHandler DownloadProgressChanged;

Implementing the EAP requires a large amount of boilerplate code, making the pat‐
tern poorly compositional.

BackgroundWorker
BackgroundWorker in System.ComponentModel is a general-purpose implementa‐
tion of the EAP. It allows rich-client apps to start a worker thread and report com‐
pletion and percentage-based progress without needing to explicitly capture
synchronization context. For instance:

var worker = new BackgroundWorker { WorkerSupportsCancellation = true };
worker.DoWork += (sender, args) =>
{                                      // This runs on a worker thread
  if (args.Cancel) return;
  Thread.Sleep(1000);
  args.Result = 123;
};
worker.RunWorkerCompleted += (sender, args) =>   
{                                                  // Runs on UI thread
  // We can safely update UI controls here...
  if (args.Cancelled)
    Console.WriteLine ("Cancelled");
  else if (args.Error != null)
    Console.WriteLine ("Error: " + args.Error.Message);
  else
    Console.WriteLine ("Result is: " + args.Result);
};
worker.RunWorkerAsync();   // Captures sync context and starts operation

RunWorkerAsync starts the operation, firing the DoWork event on a pooled worker
thread. It also captures the synchronization context, and when the operation com‐
pletes (or faults), the RunWorkerCompleted event is invoked through that synchroni‐
zation context (like a continuation).

BackgroundWorker creates coarse-grained concurrency, in that the DoWork event
runs entirely on a worker thread. If you need to update UI controls in that event
handler (other than posting a percentage-complete message), you must use Dis
patcher.BeginInvoke or similar).

We describe BackgroundWorker in more detail at http://albahari.com/threading.
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